Improving the plasticity of transition-metal-based high-entropy bulk metallic glasses via Ag-induced phase separation

IF 7 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Materials Science and Engineering: A Pub Date : 2025-04-02 DOI:10.1016/j.msea.2025.148281
Xueru Fan , Lei Xie , Qiang Li , Chuntao Chang
{"title":"Improving the plasticity of transition-metal-based high-entropy bulk metallic glasses via Ag-induced phase separation","authors":"Xueru Fan ,&nbsp;Lei Xie ,&nbsp;Qiang Li ,&nbsp;Chuntao Chang","doi":"10.1016/j.msea.2025.148281","DOIUrl":null,"url":null,"abstract":"<div><div>High-entropy bulk metallic glasses (HE-BMGs) exhibit unique combinations of mechanical and magnetic properties due to their complex compositions. This study investigates the effects of minor Ag additions on the glass-forming ability (GFA), thermal stability, and mechanical behavior of [Fe<sub>0.25</sub>Co<sub>0.25</sub>Ni<sub>0.25</sub>(Si<sub>0.3</sub>B<sub>0.7</sub>)<sub>0.25</sub>]<sub>100-x</sub>Ag<sub>x</sub> (x = 0, 0.1, 0.3, 0.5 at.%) HE-BMGs. Results indicate that Ag promotes phase separation, introducing nanoscale heterogeneity, which enhances plasticity and mechanical performance. Optimal Ag content (0.3 at.%) achieved an 15.7 % plastic strain and 3875 MPa yield strength, attributed to the formation of short-range ordered structures and shear transformation zones. These nanoscale heterogeneities acted as pinning sites, facilitating shear-band branching and stable deformation. Excessive Ag content, however, induced brittle phase formation and structural stress, reducing plasticity. Furthermore, the saturation magnetization peaked at 0.84 T with minimal degradation of GFA. These findings highlight the potential of controlled phase separation in designing HE-BMGs with superior strength-ductility synergy for advanced structural applications.</div></div>","PeriodicalId":385,"journal":{"name":"Materials Science and Engineering: A","volume":"932 ","pages":"Article 148281"},"PeriodicalIF":7.0000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science and Engineering: A","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921509325005052","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

High-entropy bulk metallic glasses (HE-BMGs) exhibit unique combinations of mechanical and magnetic properties due to their complex compositions. This study investigates the effects of minor Ag additions on the glass-forming ability (GFA), thermal stability, and mechanical behavior of [Fe0.25Co0.25Ni0.25(Si0.3B0.7)0.25]100-xAgx (x = 0, 0.1, 0.3, 0.5 at.%) HE-BMGs. Results indicate that Ag promotes phase separation, introducing nanoscale heterogeneity, which enhances plasticity and mechanical performance. Optimal Ag content (0.3 at.%) achieved an 15.7 % plastic strain and 3875 MPa yield strength, attributed to the formation of short-range ordered structures and shear transformation zones. These nanoscale heterogeneities acted as pinning sites, facilitating shear-band branching and stable deformation. Excessive Ag content, however, induced brittle phase formation and structural stress, reducing plasticity. Furthermore, the saturation magnetization peaked at 0.84 T with minimal degradation of GFA. These findings highlight the potential of controlled phase separation in designing HE-BMGs with superior strength-ductility synergy for advanced structural applications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过银诱导相分离提高过渡金属基高熵体金属玻璃的塑性
高熵体金属玻璃(he - bmg)由于其复杂的成分而表现出独特的机械和磁性组合。本文研究了微量Ag对[Fe0.25Co0.25Ni0.25(Si0.3B0.7)0.25]100-xAgx (x = 0,0.1, 0.3, 0.5 at.%) he - bmg的玻璃形成能力(GFA)、热稳定性和力学行为的影响。结果表明,Ag促进了相分离,引入了纳米尺度的非均质性,提高了合金的塑性和力学性能。最优Ag含量(0.3 at.%)可获得15.7%的塑性应变和3875 MPa的屈服强度,这主要归功于短期有序结构的形成和剪切转变区。这些纳米尺度的非均质性充当了固定位点,促进了剪切带分支和稳定变形。然而,过量的银含量会引起脆性相的形成和结构应力,降低塑性。饱和磁化强度在0.84 T时达到峰值,GFA降解最小。这些发现强调了控制相分离在设计具有优越强度-延性协同作用的he - bmg用于先进结构应用方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Materials Science and Engineering: A
Materials Science and Engineering: A 工程技术-材料科学:综合
CiteScore
11.50
自引率
15.60%
发文量
1811
审稿时长
31 days
期刊介绍: Materials Science and Engineering A provides an international medium for the publication of theoretical and experimental studies related to the load-bearing capacity of materials as influenced by their basic properties, processing history, microstructure and operating environment. Appropriate submissions to Materials Science and Engineering A should include scientific and/or engineering factors which affect the microstructure - strength relationships of materials and report the changes to mechanical behavior.
期刊最新文献
Design and synergistic strengthening mechanisms of high strength-toughness Fe-Al-Ta alloy with multi-scale architecture Enabling superior impact toughness of low-density δ-ferrite steel by dispersing ultra-fine spheroidized carbides in the ferrite/carbide composite lamellae Duplex microstructure enhanced mechanical property and underlined mechanism in Fe35MnxAl0.1C low-density steel Electric current-driven microstructural recovery and crack resistance enhancement in Ni-based superalloy Inconel 718 Tuning mechanical anisotropy in laser powder bed fusion via a rotational remelting scan strategy: A case study in niobium-based alloys
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1