Yang Xu , Yunmei Shi , Tao Jiang , Qingxia Wu , Ren Lang , Yuetao Wang , Minfu Yang
{"title":"Radiomics-based histological grading of pancreatic ductal adenocarcinoma using 18F-FDG PET/CT: A two-center study","authors":"Yang Xu , Yunmei Shi , Tao Jiang , Qingxia Wu , Ren Lang , Yuetao Wang , Minfu Yang","doi":"10.1016/j.ejrad.2025.112070","DOIUrl":null,"url":null,"abstract":"<div><h3>Objective</h3><div>To explore the value of radiomics features derived from <sup>18</sup>F-FDG PET/CT images in predicting the histological grade of pancreatic ductal adenocarcinoma (PDAC).</div></div><div><h3>Materials and Methods</h3><div>A retrospective analysis was conducted using data from patients with suspected pancreatic cancer, who histologically confirmed as PDAC within 14 days after <sup>18</sup>F-FDG PET/CT scan in one of two hospitals. Tumors were divided into high-grade (undifferentiated or poorly differentiated), and low-grade (moderately or well differentiated). Two researchers independently used uRP to perform layer-by-layer tumor segmentation in both PET and CT images of each patient, and extract features. Model performance was evaluated using 5-fold cross-validation on the entire multi-center cohort, with results averaged across all folds. The least absolute shrinkage and selection was used for feature selection, and support vector machine (SVM), random forest (RF), and logistic regression (LR) were employed to distinguish the grade of PDAC. The performance of the model was evaluated using the receiver operating characteristic curve.</div></div><div><h3>Results</h3><div>This study comprised 111 patients (72 males and 39 females), comprising 52 patients with high-grade PDAC tumors and 59 patients with low-grade. A series of models were established by SVM, LR, and RF algorithms based on selected features. In the test set, the mean areas under the curve (AUCs) for PET image-based models using SVM, LR, and RF algorithms were 0.773, 0.772, and 0.760. For CT-based models, the mean AUCs were 0.764, 0.770, and 0.576. For PET/CT-based models, the mean AUCs were 0.840, 0.844, and 0.773.</div></div><div><h3>Conclusion</h3><div>Despite the lack of external validation, the PET/CT-derived radiomics model enables accurate preoperative histological grading of PDAC, offering a clinically actionable tool to neoadjuvant therapy stratification and further guide personalized medical decision-making.</div></div>","PeriodicalId":12063,"journal":{"name":"European Journal of Radiology","volume":"187 ","pages":"Article 112070"},"PeriodicalIF":3.3000,"publicationDate":"2025-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Radiology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0720048X25001561","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Objective
To explore the value of radiomics features derived from 18F-FDG PET/CT images in predicting the histological grade of pancreatic ductal adenocarcinoma (PDAC).
Materials and Methods
A retrospective analysis was conducted using data from patients with suspected pancreatic cancer, who histologically confirmed as PDAC within 14 days after 18F-FDG PET/CT scan in one of two hospitals. Tumors were divided into high-grade (undifferentiated or poorly differentiated), and low-grade (moderately or well differentiated). Two researchers independently used uRP to perform layer-by-layer tumor segmentation in both PET and CT images of each patient, and extract features. Model performance was evaluated using 5-fold cross-validation on the entire multi-center cohort, with results averaged across all folds. The least absolute shrinkage and selection was used for feature selection, and support vector machine (SVM), random forest (RF), and logistic regression (LR) were employed to distinguish the grade of PDAC. The performance of the model was evaluated using the receiver operating characteristic curve.
Results
This study comprised 111 patients (72 males and 39 females), comprising 52 patients with high-grade PDAC tumors and 59 patients with low-grade. A series of models were established by SVM, LR, and RF algorithms based on selected features. In the test set, the mean areas under the curve (AUCs) for PET image-based models using SVM, LR, and RF algorithms were 0.773, 0.772, and 0.760. For CT-based models, the mean AUCs were 0.764, 0.770, and 0.576. For PET/CT-based models, the mean AUCs were 0.840, 0.844, and 0.773.
Conclusion
Despite the lack of external validation, the PET/CT-derived radiomics model enables accurate preoperative histological grading of PDAC, offering a clinically actionable tool to neoadjuvant therapy stratification and further guide personalized medical decision-making.
期刊介绍:
European Journal of Radiology is an international journal which aims to communicate to its readers, state-of-the-art information on imaging developments in the form of high quality original research articles and timely reviews on current developments in the field.
Its audience includes clinicians at all levels of training including radiology trainees, newly qualified imaging specialists and the experienced radiologist. Its aim is to inform efficient, appropriate and evidence-based imaging practice to the benefit of patients worldwide.