Jihan Zhuang , Amadeus Bach , Bruis H.C. van Vlijmen , Stefan J. Reichelstein , William Chueh , Simona Onori , Sally M. Benson
{"title":"Technoeconomic decision support for second-life batteries","authors":"Jihan Zhuang , Amadeus Bach , Bruis H.C. van Vlijmen , Stefan J. Reichelstein , William Chueh , Simona Onori , Sally M. Benson","doi":"10.1016/j.apenergy.2025.125800","DOIUrl":null,"url":null,"abstract":"<div><div>The growth of electric vehicles (EVs) has raised concerns about the disposition of their batteries once they reach the end of their life. Currently, recycling is regarded as the potential solution for retired Li-ion batteries (LIBs). However, these LIBs can still be repurposed for other energy storage system (ESS) applications in their “second life” before recycling. Yet, there is no guidance for deciding whether to reuse or recycle them. Here, a technoeconomic decision support model is proposed to evaluate retired batteries from both technical and economic perspectives. Data-driven models are developed and combined with an equivalent circuit model (ECM) to build module-level aging models. Simulations show that limiting the State of Charge (SOC) operating range and charge current in second life applications can extend the lifetime of LIBs. Depending on when and how to use the battery in its second life, the simulated lifetime is between 1–6 years. From an economic perspective, the most profitable application is frequency regulation, which has a value of <span><math><mrow><mo>$</mo></mrow></math></span>/kWh. A comprehensive comparison of different end-of-life strategies is presented to demonstrate the most economically way to handle a retired battery.</div></div>","PeriodicalId":246,"journal":{"name":"Applied Energy","volume":"390 ","pages":"Article 125800"},"PeriodicalIF":11.0000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306261925005306","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
The growth of electric vehicles (EVs) has raised concerns about the disposition of their batteries once they reach the end of their life. Currently, recycling is regarded as the potential solution for retired Li-ion batteries (LIBs). However, these LIBs can still be repurposed for other energy storage system (ESS) applications in their “second life” before recycling. Yet, there is no guidance for deciding whether to reuse or recycle them. Here, a technoeconomic decision support model is proposed to evaluate retired batteries from both technical and economic perspectives. Data-driven models are developed and combined with an equivalent circuit model (ECM) to build module-level aging models. Simulations show that limiting the State of Charge (SOC) operating range and charge current in second life applications can extend the lifetime of LIBs. Depending on when and how to use the battery in its second life, the simulated lifetime is between 1–6 years. From an economic perspective, the most profitable application is frequency regulation, which has a value of /kWh. A comprehensive comparison of different end-of-life strategies is presented to demonstrate the most economically way to handle a retired battery.
期刊介绍:
Applied Energy serves as a platform for sharing innovations, research, development, and demonstrations in energy conversion, conservation, and sustainable energy systems. The journal covers topics such as optimal energy resource use, environmental pollutant mitigation, and energy process analysis. It welcomes original papers, review articles, technical notes, and letters to the editor. Authors are encouraged to submit manuscripts that bridge the gap between research, development, and implementation. The journal addresses a wide spectrum of topics, including fossil and renewable energy technologies, energy economics, and environmental impacts. Applied Energy also explores modeling and forecasting, conservation strategies, and the social and economic implications of energy policies, including climate change mitigation. It is complemented by the open-access journal Advances in Applied Energy.