A hybrid-driven control strategy for optimized wind farm power dispatch

IF 9.1 1区 工程技术 Q1 ENERGY & FUELS Renewable Energy Pub Date : 2025-03-20 DOI:10.1016/j.renene.2025.122940
Luobin Wang , Sheng Huang , Guan Bai , Pengda Wang , Ji Zhang
{"title":"A hybrid-driven control strategy for optimized wind farm power dispatch","authors":"Luobin Wang ,&nbsp;Sheng Huang ,&nbsp;Guan Bai ,&nbsp;Pengda Wang ,&nbsp;Ji Zhang","doi":"10.1016/j.renene.2025.122940","DOIUrl":null,"url":null,"abstract":"<div><div>This paper proposes a hybrid-driven active power control strategy for large-scale wind farm (WF) that integrates data-driven and model-driven approaches to optimize power dispatch while reducing fatigue loads and enhancing noise resistance. The strategy employs an encoder-decoder framework in which the encoder, based on a Mixture of Experts (MoE) and Bidirectional Gated Recurrent Unit (BiGRU), captures temporal dependencies from WF time series data, and the decoder, using Graph Attention Networks (GAT), models wind turbine (WT) coupling without explicit mathematical formulations. A Deep Neural Network (DNN) adaptively fuses outputs from the data-driven and Model Predictive Control (MPC)-based strategies, delivering the best overall performance. MATLAB simulations on a WF with 32 × 5 MW WTs show that the proposed method reduces the standard deviation (SD) of shaft torque and thrust force by 21.59 % and 25.64 %, respectively, demonstrating the significant improvements of the proposed method in fatigue load reduction.</div></div>","PeriodicalId":419,"journal":{"name":"Renewable Energy","volume":"247 ","pages":"Article 122940"},"PeriodicalIF":9.1000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Renewable Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960148125006020","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper proposes a hybrid-driven active power control strategy for large-scale wind farm (WF) that integrates data-driven and model-driven approaches to optimize power dispatch while reducing fatigue loads and enhancing noise resistance. The strategy employs an encoder-decoder framework in which the encoder, based on a Mixture of Experts (MoE) and Bidirectional Gated Recurrent Unit (BiGRU), captures temporal dependencies from WF time series data, and the decoder, using Graph Attention Networks (GAT), models wind turbine (WT) coupling without explicit mathematical formulations. A Deep Neural Network (DNN) adaptively fuses outputs from the data-driven and Model Predictive Control (MPC)-based strategies, delivering the best overall performance. MATLAB simulations on a WF with 32 × 5 MW WTs show that the proposed method reduces the standard deviation (SD) of shaft torque and thrust force by 21.59 % and 25.64 %, respectively, demonstrating the significant improvements of the proposed method in fatigue load reduction.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
风电场电力调度优化的混合驱动控制策略
本文提出了一种大型风电场的混合驱动有功控制策略,该策略将数据驱动和模型驱动相结合,以优化电力调度,同时降低疲劳负荷,增强抗噪声能力。该策略采用编码器-解码器框架,其中编码器基于混合专家(MoE)和双向门控循环单元(BiGRU),从WF时间序列数据中捕获时间依赖性,解码器使用图注意网络(GAT),在没有明确数学公式的情况下对风力涡轮机(WT)耦合进行建模。深度神经网络(DNN)自适应融合数据驱动和基于模型预测控制(MPC)策略的输出,提供最佳的整体性能。在32 × 5 MW WTs的WF上进行了MATLAB仿真,结果表明,该方法可将轴转矩和推力的标准差(SD)分别降低21.59%和25.64%,证明了该方法在降低疲劳载荷方面的显著改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Renewable Energy
Renewable Energy 工程技术-能源与燃料
CiteScore
18.40
自引率
9.20%
发文量
1955
审稿时长
6.6 months
期刊介绍: Renewable Energy journal is dedicated to advancing knowledge and disseminating insights on various topics and technologies within renewable energy systems and components. Our mission is to support researchers, engineers, economists, manufacturers, NGOs, associations, and societies in staying updated on new developments in their respective fields and applying alternative energy solutions to current practices. As an international, multidisciplinary journal in renewable energy engineering and research, we strive to be a premier peer-reviewed platform and a trusted source of original research and reviews in the field of renewable energy. Join us in our endeavor to drive innovation and progress in sustainable energy solutions.
期刊最新文献
Enhancing melting-solidification performance of latent heat thermal energy storage units with twisted fins High-efficiency hybrid MPPT technique with integrated partial shading detection for photovoltaic systems under varying shading conditions Fast annual energy estimation for solar tower power systems based on heliostat grouping and solar position sampling Investigation on co-pyrolysis polygeneration of municipal solid waste and heavy bio-oil of pine wood based on response surface methodology Performance and exergy analysis of a NaBH4/Al coupled hydrolysis hydrogen production solid oxide fuel cell hybrid turbofan system with integrated water circulation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1