NiMn-LDH@Ti3C2(OH)2 as a new MXene-LDH nanocomposite for effective hydrogen evolution reaction in alkaline media

IF 7.9 3区 材料科学 Q1 GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY Materials Today Sustainability Pub Date : 2025-04-02 DOI:10.1016/j.mtsust.2025.101109
Sheyda Goudarzi , Ali Ghaffarinejad
{"title":"NiMn-LDH@Ti3C2(OH)2 as a new MXene-LDH nanocomposite for effective hydrogen evolution reaction in alkaline media","authors":"Sheyda Goudarzi ,&nbsp;Ali Ghaffarinejad","doi":"10.1016/j.mtsust.2025.101109","DOIUrl":null,"url":null,"abstract":"<div><div>The development of efficient, earth-abundant Pt-free electrocatalysts for alkaline hydrogen evolution reaction (HER) represents a significant leap forward in sustainable green energy production. In this study, the NiMn-LDH@Ti<sub>3</sub>C<sub>2</sub>(OH)<sub>2</sub> nanocomposite was synthesized for the first time through a straightforward co-precipitation method, avoiding the need for high temperatures or prolonged reaction times and employing cost-effective salts. The vertical alignment of LDH sheets on MXene layers imparts various advantageous textural properties, such as optimized electronic configuration, efficient gas diffusion, and transport on the electrocatalyst surface, prevention of aggregation and redeposition of NiMn-LDH and MXene nanosheets, significant porosity, and a multitude of exposed active sites. Considering the synergistic effects, the NiMn-LDH@MXene (5:1) structure exhibited a significant reduction of approximately 1.3 and 1.8-fold in overvoltage at a current density of 10 mA. cm<sup>−2</sup> compared to NiMn-LDH and MXene alone. Additionally, the obtained NiMn-LDH@MXene (5:1) structure demonstrated superior HER performance, characterized by a lower onset potential at a current density of 10 mA. cm<sup>−2</sup> (<em>Ƞ</em><sub><em>10</em></sub> = −0.460 V/RHE), diminutive Tafel slope (220 mV. dec<sup>−1</sup>), and reduced charge transfer resistance (6 Ω cm<sup>2</sup>), relative to other mass ratios of NiMn-LDH@MXene (1:1, 2:1, 3:1, 4:1). The favorable HER activity positions the NiMn-LDH@Ti<sub>3</sub>C<sub>2</sub>(OH)<sub>2</sub> synthetic strategy as a potential approach for developing electrocatalysts based on other LDH and MXene compounds, including oxygen-terminated MXenes, to enhance catalytic performance.</div></div>","PeriodicalId":18322,"journal":{"name":"Materials Today Sustainability","volume":"30 ","pages":"Article 101109"},"PeriodicalIF":7.9000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Sustainability","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589234725000387","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The development of efficient, earth-abundant Pt-free electrocatalysts for alkaline hydrogen evolution reaction (HER) represents a significant leap forward in sustainable green energy production. In this study, the NiMn-LDH@Ti3C2(OH)2 nanocomposite was synthesized for the first time through a straightforward co-precipitation method, avoiding the need for high temperatures or prolonged reaction times and employing cost-effective salts. The vertical alignment of LDH sheets on MXene layers imparts various advantageous textural properties, such as optimized electronic configuration, efficient gas diffusion, and transport on the electrocatalyst surface, prevention of aggregation and redeposition of NiMn-LDH and MXene nanosheets, significant porosity, and a multitude of exposed active sites. Considering the synergistic effects, the NiMn-LDH@MXene (5:1) structure exhibited a significant reduction of approximately 1.3 and 1.8-fold in overvoltage at a current density of 10 mA. cm−2 compared to NiMn-LDH and MXene alone. Additionally, the obtained NiMn-LDH@MXene (5:1) structure demonstrated superior HER performance, characterized by a lower onset potential at a current density of 10 mA. cm−2 (Ƞ10 = −0.460 V/RHE), diminutive Tafel slope (220 mV. dec−1), and reduced charge transfer resistance (6 Ω cm2), relative to other mass ratios of NiMn-LDH@MXene (1:1, 2:1, 3:1, 4:1). The favorable HER activity positions the NiMn-LDH@Ti3C2(OH)2 synthetic strategy as a potential approach for developing electrocatalysts based on other LDH and MXene compounds, including oxygen-terminated MXenes, to enhance catalytic performance.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
NiMn-LDH@Ti3C2(OH)2作为一种新的MXene-LDH纳米复合材料在碱性介质中进行有效的析氢反应
开发用于碱性氢进化反应(HER)的高效无土铂电催化剂是可持续绿色能源生产的重大飞跃。本研究首次采用直接共沉淀法合成了镍锰-LDH@Ti3C2(OH)2 纳米复合材料,避免了高温或延长反应时间的需要,并采用了具有成本效益的盐。在 MXene 层上垂直排列的 LDH 片具有各种有利的质构特性,如优化的电子构型、高效的气体扩散和在电催化剂表面的传输、防止 NiMn-LDH 和 MXene 纳米片的聚集和再沉积、显著的多孔性和大量暴露的活性位点。考虑到协同效应,在电流密度为 10 mA. cm-2 时,镍锰-LDH@MXene(5:1)结构的过电压比单独使用镍锰-LDH 和 MXene 时分别显著降低了约 1.3 倍和 1.8 倍。此外,与其他质量比的镍锰-LDH@MXene(1:1、2:1、3:1 和 4:1)相比,所获得的镍锰-LDH@MXene(5:1)结构具有更优越的 HER 性能,其特点是在 10 mA. cm-2 的电流密度下具有更低的起始电位(Ƞ10 = -0.460 V/RHE)、更小的塔菲尔斜率(220 mV. dec-1)以及更低的电荷转移电阻(6 Ω cm2)。良好的 HER 活性将 NiMn-LDH@Ti3C2(OH)2 合成策略定位为一种潜在的方法,用于开发基于其他 LDH 和 MXene 化合物(包括氧端 MXene)的电催化剂,以提高催化性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.80
自引率
6.40%
发文量
174
审稿时长
32 days
期刊介绍: Materials Today Sustainability is a multi-disciplinary journal covering all aspects of sustainability through materials science. With a rapidly increasing population with growing demands, materials science has emerged as a critical discipline toward protecting of the environment and ensuring the long term survival of future generations.
期刊最新文献
Assessing the sustainability potential of circular geopolymer concrete: A life cycle assessment and multi-criteria decision making approach Towards efficient production and application of bacterial cellulose: the progress from conventional to advanced production Advances in green synthesis of nanoparticles for biomedical applications: Antimicrobial, antiviral, and cancer therapies Optimizing carbon sequestration and performance of a sustainable gypsum-based materials using steel slag waste Agro-food waste upcycling into mycelium insulation: Linking structure with mechanical and fire performance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1