Effect of sandblasting treatment on mechanical and electrochemical corrosion properties of SLM-formed Ti6Al4V radial gradient porous bionic bone scaffold

IF 4.7 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Materials Chemistry and Physics Pub Date : 2025-03-31 DOI:10.1016/j.matchemphys.2025.130825
Tao Wen , Bibo Yao , Zhenhua Li , Meihong Liu , Yongchang Qi , Zixi Zhang , Jiping Zhu , Dingbang Wang , Zhanliang Liu
{"title":"Effect of sandblasting treatment on mechanical and electrochemical corrosion properties of SLM-formed Ti6Al4V radial gradient porous bionic bone scaffold","authors":"Tao Wen ,&nbsp;Bibo Yao ,&nbsp;Zhenhua Li ,&nbsp;Meihong Liu ,&nbsp;Yongchang Qi ,&nbsp;Zixi Zhang ,&nbsp;Jiping Zhu ,&nbsp;Dingbang Wang ,&nbsp;Zhanliang Liu","doi":"10.1016/j.matchemphys.2025.130825","DOIUrl":null,"url":null,"abstract":"<div><div>Radial gradient porous structures, which resemble human bone characteristics, are promising for use in implants. Selective laser melting (SLM) of porous biomaterials shows potential, but challenges such as unmelted powder on the surface affect material quality and dimensional accuracy. Considering the complex solution environment in the human body, corrosion resistance is crucial for implanted materials. In this study, a radial gradient porous scaffold is designed using a Gyroid unit cell structure and fabricated by SLM, followed by sandblasting. The forming accuracy, microstructure, mechanical properties, and electrochemical corrosion behavior in simulated body fluid (SBF) are investigated before and after sandblasting. Sandblasting effectively removes adhering powder, improving pore size accuracy and reducing porosity error from 1.41 %-1.69 % to 0.15 %–0.38 %. Grain size decreases, grain density increases, and unmelted voids are eliminated. However, the passivation film is damaged, reducing corrosion resistance, with a tenfold increase in corrosion current density compared to the original samples. After sandblasting, the elastic modulus increases from 7.84–8.83 GPa to 8.08–9.02 GPa, and the yield strength improves from 292.02–328.31 MPa to 300.17–336.73 MPa, enhancing the scaffold's load-bearing capacity. The SB0.8 structure exhibits the highest yield strength. The scaffold transitions from brittle fracture to a mixed fracture mode, with improved toughness and ductility after sandblasting.</div></div>","PeriodicalId":18227,"journal":{"name":"Materials Chemistry and Physics","volume":"340 ","pages":"Article 130825"},"PeriodicalIF":4.7000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Chemistry and Physics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0254058425004717","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Radial gradient porous structures, which resemble human bone characteristics, are promising for use in implants. Selective laser melting (SLM) of porous biomaterials shows potential, but challenges such as unmelted powder on the surface affect material quality and dimensional accuracy. Considering the complex solution environment in the human body, corrosion resistance is crucial for implanted materials. In this study, a radial gradient porous scaffold is designed using a Gyroid unit cell structure and fabricated by SLM, followed by sandblasting. The forming accuracy, microstructure, mechanical properties, and electrochemical corrosion behavior in simulated body fluid (SBF) are investigated before and after sandblasting. Sandblasting effectively removes adhering powder, improving pore size accuracy and reducing porosity error from 1.41 %-1.69 % to 0.15 %–0.38 %. Grain size decreases, grain density increases, and unmelted voids are eliminated. However, the passivation film is damaged, reducing corrosion resistance, with a tenfold increase in corrosion current density compared to the original samples. After sandblasting, the elastic modulus increases from 7.84–8.83 GPa to 8.08–9.02 GPa, and the yield strength improves from 292.02–328.31 MPa to 300.17–336.73 MPa, enhancing the scaffold's load-bearing capacity. The SB0.8 structure exhibits the highest yield strength. The scaffold transitions from brittle fracture to a mixed fracture mode, with improved toughness and ductility after sandblasting.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
喷砂处理对slm成形Ti6Al4V径向梯度多孔仿生骨支架力学和电化学腐蚀性能的影响
径向梯度多孔结构具有类似人骨的特征,在植入物中应用前景广阔。多孔生物材料的选择性激光熔化(SLM)技术显示出巨大的潜力,但存在表面未熔化粉末等问题,影响了材料的质量和尺寸精度。考虑到人体内复杂的溶液环境,植入材料的耐腐蚀性至关重要。本研究采用Gyroid单孔结构设计径向梯度多孔支架,并采用SLM工艺进行喷砂加工。研究了喷砂前后复合材料的成形精度、微观组织、力学性能及在模拟体液中的电化学腐蚀行为。喷砂有效去除附着粉,提高孔径精度,将孔隙度误差从1.41% ~ 1.69%降低到0.15% ~ 0.38%。晶粒尺寸减小,晶粒密度增大,未熔化的空隙被消除。然而,钝化膜被破坏,降低了耐腐蚀性,与原始样品相比,腐蚀电流密度增加了十倍。喷砂后,支架弹性模量由7.84 ~ 8.83 GPa提高到8.08 ~ 9.02 GPa,屈服强度由292.02 ~ 328.31 MPa提高到300.17 ~ 336.73 MPa,支架的承载能力增强。SB0.8组织的屈服强度最高。喷砂后,支架由脆性断裂转变为混合断裂,韧性和延展性得到提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Materials Chemistry and Physics
Materials Chemistry and Physics 工程技术-材料科学:综合
CiteScore
8.70
自引率
4.30%
发文量
1515
审稿时长
69 days
期刊介绍: Materials Chemistry and Physics is devoted to short communications, full-length research papers and feature articles on interrelationships among structure, properties, processing and performance of materials. The Editors welcome manuscripts on thin films, surface and interface science, materials degradation and reliability, metallurgy, semiconductors and optoelectronic materials, fine ceramics, magnetics, superconductors, specialty polymers, nano-materials and composite materials.
期刊最新文献
Probing hard carbon fiber fabric synthesized by CO2 laser for Na-ion battery anodes Acetone sensing mechanism of SnO2:WO3 5 % operated under high-humidity atmospheres Corrosion behaviour of Fe–rGO composites in PBS versus protein-enriched media Hydrothermal synthesis of Ag/Ni15O16 nanocomposite: Exploiting green chemistry for environmental and biomedical applications Simple template-free method for the controllable synthesis of highly crystalline ZSM-5 molecular sieve
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1