Carlos G. Albà , Ismail I.I. Alkhatib , Lourdes F. Vega , Fèlix Llovell
{"title":"Machine learning integration in thermodynamics: Predicting CO2 mixture saturation properties for sustainable refrigeration applications","authors":"Carlos G. Albà , Ismail I.I. Alkhatib , Lourdes F. Vega , Fèlix Llovell","doi":"10.1016/j.jcou.2025.103072","DOIUrl":null,"url":null,"abstract":"<div><div>The need for sustainable alternatives in refrigeration has grown as Europe enforces mandates on avoiding high global warming potential (GWP) refrigerants. CO₂-based refrigerants have emerged as a promising choice in response, distinguished by its low GWP and reduced flammability, compared to formulated hydrofluoroolefins, thus offering a safer and sustainable solution in the context of next generation drop-in refrigerants. This study presents a machine-learning-based methodology to estimate the saturation properties of CO<sub>2</sub>-based mixtures, allowing for the precise tuning of molecular-based models like the polar soft-SAFT, used for technical evaluation, without relying on experimental data, often unavailable for such systems. The approach departs from the thermodynamic characterization of several pure-components, including novel fluorine-based refrigerants. The parametrization allows an excellent description of the vapor pressure, saturated densities, and latent heat. Next, a constant, temperature-independent binary parameter is used to estimate the solubility profiles of CO<sub>2</sub>-derived mixtures in selected refrigerants. The model effectively captures azeotropic and zeotropic behaviors, demonstrating its strength in fine-tuning solubility with minimal corrections. Subsequently, data from the molecular characterization via polar soft-SAFT is used as output targets to train a machine learning algorithm based on artificial neural networks, enabling the prediction of mixture saturation properties out of the training dataset's scope. Using COSMO σ-profiles, the developed ANN demonstrates high efficiency in predicting saturation bubble and dew temperatures, achieving R² > 0.9999, RMSE< 0.0959, AARD < 0.0220 %, and NMAD of 0.00044. Statistical analysis confirms minimal mean deviations, with outliers limited to 2.63 % for bubble and 2.44% for dew phase predictions, respectively.</div></div>","PeriodicalId":350,"journal":{"name":"Journal of CO2 Utilization","volume":"95 ","pages":"Article 103072"},"PeriodicalIF":8.4000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of CO2 Utilization","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212982025000563","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The need for sustainable alternatives in refrigeration has grown as Europe enforces mandates on avoiding high global warming potential (GWP) refrigerants. CO₂-based refrigerants have emerged as a promising choice in response, distinguished by its low GWP and reduced flammability, compared to formulated hydrofluoroolefins, thus offering a safer and sustainable solution in the context of next generation drop-in refrigerants. This study presents a machine-learning-based methodology to estimate the saturation properties of CO2-based mixtures, allowing for the precise tuning of molecular-based models like the polar soft-SAFT, used for technical evaluation, without relying on experimental data, often unavailable for such systems. The approach departs from the thermodynamic characterization of several pure-components, including novel fluorine-based refrigerants. The parametrization allows an excellent description of the vapor pressure, saturated densities, and latent heat. Next, a constant, temperature-independent binary parameter is used to estimate the solubility profiles of CO2-derived mixtures in selected refrigerants. The model effectively captures azeotropic and zeotropic behaviors, demonstrating its strength in fine-tuning solubility with minimal corrections. Subsequently, data from the molecular characterization via polar soft-SAFT is used as output targets to train a machine learning algorithm based on artificial neural networks, enabling the prediction of mixture saturation properties out of the training dataset's scope. Using COSMO σ-profiles, the developed ANN demonstrates high efficiency in predicting saturation bubble and dew temperatures, achieving R² > 0.9999, RMSE< 0.0959, AARD < 0.0220 %, and NMAD of 0.00044. Statistical analysis confirms minimal mean deviations, with outliers limited to 2.63 % for bubble and 2.44% for dew phase predictions, respectively.
期刊介绍:
The Journal of CO2 Utilization offers a single, multi-disciplinary, scholarly platform for the exchange of novel research in the field of CO2 re-use for scientists and engineers in chemicals, fuels and materials.
The emphasis is on the dissemination of leading-edge research from basic science to the development of new processes, technologies and applications.
The Journal of CO2 Utilization publishes original peer-reviewed research papers, reviews, and short communications, including experimental and theoretical work, and analytical models and simulations.