Machine learning integration in thermodynamics: Predicting CO2 mixture saturation properties for sustainable refrigeration applications

IF 8.4 2区 工程技术 Q1 CHEMISTRY, MULTIDISCIPLINARY Journal of CO2 Utilization Pub Date : 2025-04-04 DOI:10.1016/j.jcou.2025.103072
Carlos G. Albà , Ismail I.I. Alkhatib , Lourdes F. Vega , Fèlix Llovell
{"title":"Machine learning integration in thermodynamics: Predicting CO2 mixture saturation properties for sustainable refrigeration applications","authors":"Carlos G. Albà ,&nbsp;Ismail I.I. Alkhatib ,&nbsp;Lourdes F. Vega ,&nbsp;Fèlix Llovell","doi":"10.1016/j.jcou.2025.103072","DOIUrl":null,"url":null,"abstract":"<div><div>The need for sustainable alternatives in refrigeration has grown as Europe enforces mandates on avoiding high global warming potential (GWP) refrigerants. CO₂-based refrigerants have emerged as a promising choice in response, distinguished by its low GWP and reduced flammability, compared to formulated hydrofluoroolefins, thus offering a safer and sustainable solution in the context of next generation drop-in refrigerants. This study presents a machine-learning-based methodology to estimate the saturation properties of CO<sub>2</sub>-based mixtures, allowing for the precise tuning of molecular-based models like the polar soft-SAFT, used for technical evaluation, without relying on experimental data, often unavailable for such systems. The approach departs from the thermodynamic characterization of several pure-components, including novel fluorine-based refrigerants. The parametrization allows an excellent description of the vapor pressure, saturated densities, and latent heat. Next, a constant, temperature-independent binary parameter is used to estimate the solubility profiles of CO<sub>2</sub>-derived mixtures in selected refrigerants. The model effectively captures azeotropic and zeotropic behaviors, demonstrating its strength in fine-tuning solubility with minimal corrections. Subsequently, data from the molecular characterization via polar soft-SAFT is used as output targets to train a machine learning algorithm based on artificial neural networks, enabling the prediction of mixture saturation properties out of the training dataset's scope. Using COSMO σ-profiles, the developed ANN demonstrates high efficiency in predicting saturation bubble and dew temperatures, achieving R² &gt; 0.9999, RMSE&lt; 0.0959, AARD &lt; 0.0220 %, and NMAD of 0.00044. Statistical analysis confirms minimal mean deviations, with outliers limited to 2.63 % for bubble and 2.44% for dew phase predictions, respectively.</div></div>","PeriodicalId":350,"journal":{"name":"Journal of CO2 Utilization","volume":"95 ","pages":"Article 103072"},"PeriodicalIF":8.4000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of CO2 Utilization","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212982025000563","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The need for sustainable alternatives in refrigeration has grown as Europe enforces mandates on avoiding high global warming potential (GWP) refrigerants. CO₂-based refrigerants have emerged as a promising choice in response, distinguished by its low GWP and reduced flammability, compared to formulated hydrofluoroolefins, thus offering a safer and sustainable solution in the context of next generation drop-in refrigerants. This study presents a machine-learning-based methodology to estimate the saturation properties of CO2-based mixtures, allowing for the precise tuning of molecular-based models like the polar soft-SAFT, used for technical evaluation, without relying on experimental data, often unavailable for such systems. The approach departs from the thermodynamic characterization of several pure-components, including novel fluorine-based refrigerants. The parametrization allows an excellent description of the vapor pressure, saturated densities, and latent heat. Next, a constant, temperature-independent binary parameter is used to estimate the solubility profiles of CO2-derived mixtures in selected refrigerants. The model effectively captures azeotropic and zeotropic behaviors, demonstrating its strength in fine-tuning solubility with minimal corrections. Subsequently, data from the molecular characterization via polar soft-SAFT is used as output targets to train a machine learning algorithm based on artificial neural networks, enabling the prediction of mixture saturation properties out of the training dataset's scope. Using COSMO σ-profiles, the developed ANN demonstrates high efficiency in predicting saturation bubble and dew temperatures, achieving R² > 0.9999, RMSE< 0.0959, AARD < 0.0220 %, and NMAD of 0.00044. Statistical analysis confirms minimal mean deviations, with outliers limited to 2.63 % for bubble and 2.44% for dew phase predictions, respectively.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
热力学中的机器学习集成:预测可持续制冷应用中的CO2混合物饱和特性
随着欧洲强制要求避免使用高全球变暖潜能值(GWP)制冷剂,对制冷领域可持续替代品的需求日益增长。与配制的氢氟烯烃相比,CO 2基制冷剂因其低GWP值和低可燃性而成为一种很有前途的选择,因此在下一代嵌入式制冷剂的背景下提供了更安全、可持续的解决方案。本研究提出了一种基于机器学习的方法来估计基于二氧化碳的混合物的饱和特性,允许精确调整基于分子的模型,如极性软saft,用于技术评估,而不依赖于通常不可用于此类系统的实验数据。该方法偏离了几种纯组分的热力学特性,包括新型氟基制冷剂。参数化可以很好地描述蒸汽压、饱和密度和潜热。接下来,一个恒定的、与温度无关的二元参数被用来估计co2衍生混合物在选定制冷剂中的溶解度。该模型有效地捕获了共沸和共沸行为,证明了其在以最小修正微调溶解度方面的优势。随后,通过极性软saft获得的分子表征数据被用作输出目标,用于训练基于人工神经网络的机器学习算法,从而能够预测训练数据集范围之外的混合物饱和度特性。利用COSMO σ-剖面,所建立的人工神经网络对饱和气泡和露珠温度的预测效率很高,R²>; 0.9999,RMSE<; 0.0959,AARD <; 0.0220 %,NMAD为0.00044。统计分析证实了最小的平均偏差,气泡和露相预测的异常值分别限制在2.63 %和2.44%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of CO2 Utilization
Journal of CO2 Utilization CHEMISTRY, MULTIDISCIPLINARY-ENGINEERING, CHEMICAL
CiteScore
13.90
自引率
10.40%
发文量
406
审稿时长
2.8 months
期刊介绍: The Journal of CO2 Utilization offers a single, multi-disciplinary, scholarly platform for the exchange of novel research in the field of CO2 re-use for scientists and engineers in chemicals, fuels and materials. The emphasis is on the dissemination of leading-edge research from basic science to the development of new processes, technologies and applications. The Journal of CO2 Utilization publishes original peer-reviewed research papers, reviews, and short communications, including experimental and theoretical work, and analytical models and simulations.
期刊最新文献
Sensitivity analysis of the H2S breakthrough curve in a column packed with type 13X zeolite: Parametric study of pressure swing adsorption process for CO2 separation and biomethane production High-yield solar photocatalytic CO₂ conversion in dense-phase CO₂ via ZnO/CuO/Ti₃C₂ nanosheet heterojunctions with ionic liquids Solar photothermo-catalytic CO2 conversion into methane: Effect of phyllosilicates on the performance of Ni-Zn-Al layered double hydroxide-derived catalysts Numerical simulation and optimization of a CO2 absorption tower using solution absorption method for capture Advanced solar–geothermal polygeneration system for CO2-based power, hydrogen, and freshwater recovery via transcritical CO2 rankine cycle
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1