Harnessing Near-Infrared Light for Enhanced Solar Hydrogen Production from Escherichia coli Interfaced with Biocompatible Low-Bandgap Conjugated Polymer Nanosheets

IF 26.8 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Advanced Materials Pub Date : 2025-04-03 DOI:10.1002/adma.202407805
Jie Zhou, Jun Cheng, Wan Zhang, Lei Wang, Hangxun Xu
{"title":"Harnessing Near-Infrared Light for Enhanced Solar Hydrogen Production from Escherichia coli Interfaced with Biocompatible Low-Bandgap Conjugated Polymer Nanosheets","authors":"Jie Zhou,&nbsp;Jun Cheng,&nbsp;Wan Zhang,&nbsp;Lei Wang,&nbsp;Hangxun Xu","doi":"10.1002/adma.202407805","DOIUrl":null,"url":null,"abstract":"<p>The efficient conversion of solar energy into clean hydrogen fuel presents a promising pathway for sustainable energy production. However, utilizing the full solar spectrum, particularly the near-infrared (NIR) region, remains underexplored in photosynthetic biohybrid systems. In this study, biocompatible, low-bandgap conjugated polymer nanosheets (PyTT-tBAL-HAB) are developed to integrate with non-photosynthetic, non-genetically engineered <i>Escherichia coli</i> (<i>E. coli</i>) for enhanced solar-driven biological hydrogen production. The PyTT-tBAL-HAB nanosheets exhibit unique NIR light absorption properties. Integrating these nanosheets with <i>E. coli</i> facilitates efficient electron transfer, resulting in a 1.96-fold increase in hydrogen production rate under NIR light. Consequently, this photosynthetic biohybrid system achieves a quantum efficiency of 18.36% at 940 nm. This study demonstrates the potential of using low-bandgap conjugated polymer nanosheets as advanced photosensitizers in semi-artificial photosynthetic systems, offering a robust platform for the effective utilization of the solar spectrum.</p>","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"37 20","pages":""},"PeriodicalIF":26.8000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/adma.202407805","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The efficient conversion of solar energy into clean hydrogen fuel presents a promising pathway for sustainable energy production. However, utilizing the full solar spectrum, particularly the near-infrared (NIR) region, remains underexplored in photosynthetic biohybrid systems. In this study, biocompatible, low-bandgap conjugated polymer nanosheets (PyTT-tBAL-HAB) are developed to integrate with non-photosynthetic, non-genetically engineered Escherichia coli (E. coli) for enhanced solar-driven biological hydrogen production. The PyTT-tBAL-HAB nanosheets exhibit unique NIR light absorption properties. Integrating these nanosheets with E. coli facilitates efficient electron transfer, resulting in a 1.96-fold increase in hydrogen production rate under NIR light. Consequently, this photosynthetic biohybrid system achieves a quantum efficiency of 18.36% at 940 nm. This study demonstrates the potential of using low-bandgap conjugated polymer nanosheets as advanced photosensitizers in semi-artificial photosynthetic systems, offering a robust platform for the effective utilization of the solar spectrum.

Abstract Image

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用近红外光增强大肠杆菌与生物相容性低带隙共轭聚合物纳米片的太阳能制氢。
将太阳能高效转化为清洁的氢燃料为可持续能源生产提供了一条有前景的途径。然而,利用全太阳光谱,特别是近红外(NIR)区域,在光合生物杂交系统中仍未得到充分的探索。在这项研究中,开发了生物相容性,低带隙共轭聚合物纳米片(PyTT-tBAL-HAB),用于与非光合作用,非基因工程的大肠杆菌(E. coli)整合,以增强太阳能驱动的生物制氢。PyTT-tBAL-HAB纳米片具有独特的近红外光吸收特性。将这些纳米片与大肠杆菌相结合有助于有效的电子转移,从而使近红外光下的产氢率提高1.96倍。因此,该光合生物杂交系统在940 nm处实现了18.36%的量子效率。该研究证明了低带隙共轭聚合物纳米片在半人工光合系统中作为先进光敏剂的潜力,为有效利用太阳光谱提供了一个强大的平台。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
期刊最新文献
Opportunities of Semiconducting Oxide Nanostructures as Advanced Luminescent Materials in Photonics Liquid Metal Microrobots for Magnetically Guided Transvascular Navigation Lattice Mismatched Platinum‐Tellurium@Platinum‐Ruthenium Core@Shell Nanorods Achieve Ultrahigh Alkaline Hydrogen Electrocatalysis for Dual Practical Devices Resonant Interlayer Coupling in NbSe 2 ‐Graphite Epitaxial Moiré Superlattices Dynamic Geminal‐Atom Coordination for Highly Efficient Photo‐Fenton Catalysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1