Disrupted adipokine secretion and inflammatory responses in human adipocyte hypertrophy.

IF 3.1 4区 生物学 Q2 ENDOCRINOLOGY & METABOLISM Adipocyte Pub Date : 2025-12-01 Epub Date: 2025-04-03 DOI:10.1080/21623945.2025.2485927
Dan Gao, Chen Bing, Helen R Griffiths
{"title":"Disrupted adipokine secretion and inflammatory responses in human adipocyte hypertrophy.","authors":"Dan Gao, Chen Bing, Helen R Griffiths","doi":"10.1080/21623945.2025.2485927","DOIUrl":null,"url":null,"abstract":"<p><p>Adipocyte hypertrophy is a critical contributor to obesity-induced inflammation and insulin resistance. This study employed a human adipocyte hypertrophy model to investigate the adipokine release, inflammatory responses, and the intracellular singling pathways. Hypertrophic adipocytes exhibited increased lipid content and lipolysis, a decline of anti-inflammatory adipokine adiponectin release and an increase of pro-inflammatory adipokine leptin release compared to mature adipocytes. Moreover, TNFα and LPS exacerbated the decrease in adiponectin secretion by hypertrophic adipocytes while promoting the secretion of leptin, MCP-1 and IL-6, which is associated with impaired activation of p38 and JNK MAPK and persistent activation of ERK and IκBα in hypertrophic adipocytes. These altered adipokine secretions and inflammatory responses within hypertrophic adipocytes may contribute to adipocyte dysfunction in human obesity.</p>","PeriodicalId":7226,"journal":{"name":"Adipocyte","volume":"14 1","pages":"2485927"},"PeriodicalIF":3.1000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11980453/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Adipocyte","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/21623945.2025.2485927","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/3 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

Abstract

Adipocyte hypertrophy is a critical contributor to obesity-induced inflammation and insulin resistance. This study employed a human adipocyte hypertrophy model to investigate the adipokine release, inflammatory responses, and the intracellular singling pathways. Hypertrophic adipocytes exhibited increased lipid content and lipolysis, a decline of anti-inflammatory adipokine adiponectin release and an increase of pro-inflammatory adipokine leptin release compared to mature adipocytes. Moreover, TNFα and LPS exacerbated the decrease in adiponectin secretion by hypertrophic adipocytes while promoting the secretion of leptin, MCP-1 and IL-6, which is associated with impaired activation of p38 and JNK MAPK and persistent activation of ERK and IκBα in hypertrophic adipocytes. These altered adipokine secretions and inflammatory responses within hypertrophic adipocytes may contribute to adipocyte dysfunction in human obesity.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
人脂肪细胞肥大中脂肪因子分泌中断和炎症反应。
脂肪细胞肥大是肥胖引起的炎症和胰岛素抵抗的关键因素。本研究采用人脂肪细胞肥大模型,研究脂肪因子的释放、炎症反应和细胞内单链通路。与成熟脂肪细胞相比,肥厚性脂肪细胞表现为脂质含量和脂肪分解增加,抗炎脂肪因子脂联素释放减少,促炎脂肪因子瘦素释放增加。此外,TNFα和LPS加剧了肥厚性脂肪细胞分泌脂联素的减少,同时促进瘦素、MCP-1和IL-6的分泌,这与肥厚性脂肪细胞p38和JNK MAPK的激活受损以及ERK和IκBα的持续激活有关。这些改变的脂肪因子分泌和肥厚脂肪细胞内的炎症反应可能导致人类肥胖的脂肪细胞功能障碍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Adipocyte
Adipocyte Medicine-Histology
CiteScore
6.50
自引率
3.00%
发文量
46
审稿时长
32 weeks
期刊介绍: Adipocyte recognizes that the adipose tissue is the largest endocrine organ in the body, and explores the link between dysfunctional adipose tissue and the growing number of chronic diseases including diabetes, hypertension, cardiovascular disease and cancer. Historically, the primary function of the adipose tissue was limited to energy storage and thermoregulation. However, a plethora of research over the past 3 decades has recognized the dynamic role of the adipose tissue and its contribution to a variety of physiological processes including reproduction, angiogenesis, apoptosis, inflammation, blood pressure, coagulation, fibrinolysis, immunity and general metabolic homeostasis. The field of Adipose Tissue research has grown tremendously, and Adipocyte is the first international peer-reviewed journal of its kind providing a multi-disciplinary forum for research focusing exclusively on all aspects of adipose tissue physiology and pathophysiology. Adipocyte accepts high-profile submissions in basic, translational and clinical research.
期刊最新文献
Erianin inhibits 3T3-L1 adipocyte differentiation through downregulation of CCAAT-enhancer binding protein-α and peroxisome proliferator-activated receptor-γ, lipogenic genes and impairment of mitochondrial respiration. Disease-associated adipose browning: current evidence and perspectives. cAMP-PKA/EPAC signaling pathways: crucial regulators of lipid homeostasis. Lack of receptor for advanced glycation end products attenuates obesity-induced adipose tissue senescence in mice. Bioactive peptides PDBSN improve mitochondrial function and suppression the oxidative stress in human adiposity cells.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1