首页 > 最新文献

Adipocyte最新文献

英文 中文
Bioinformatics analysis identifies key secretory protein-encoding differentially expressed genes in adipose tissue of metabolic syndrome. 生物信息学分析鉴定代谢综合征脂肪组织中关键分泌蛋白编码差异表达基因。
IF 3.5 4区 生物学 Q2 ENDOCRINOLOGY & METABOLISM Pub Date : 2025-12-01 Epub Date: 2025-01-16 DOI: 10.1080/21623945.2024.2446243
Jiandong Zhou, Yunshan Guo, Xuan Liu, Weijie Yuan

The objective of this study was to identify key secretory protein-encoding differentially expressed genes (SP-DEGs) in adipose tissue in female metabolic syndrome, thus detecting potential targets in treatment. We examined gene expression profiles in 8 women with metabolic syndrome and 7 healthy, normal body weight women. A total of 143 SP-DEGs were screened, including 83 upregulated genes and 60 downregulated genes. GO analyses of these SP-DEGs included proteolysis, angiogenesis, positive regulation of endothelial cell proliferation, immune response, protein processing, positive regulation of neuroblast proliferation, cell adhesion and ER to Golgi vesicle-mediated transport. KEGG pathway analysis of the SP-DEGs were involved in the TGF-beta signalling pathway, cytokine‒cytokine receptor interactions, the hippo signalling pathway, Malaria. Two modules were identified from the PPI network, namely, Module 1 (DNMT1, KDM1A, NCoR1, and E2F1) and Module 2 (IL-7 R, IL-12A, and CSF3). The gene DNMT1 was shared between the network modules and the WGCNA brown module. According to the single-gene GSEA results, DNMT1 was significantly positively correlated with histidine metabolism and phenylalanine metabolism. This study identified 7 key SP-DEGs in adipose tissue. DNMT1 was selected as the central gene in the development of metabolic syndrome and might be a potential therapeutic target.

本研究的目的是鉴定女性代谢综合征脂肪组织中关键分泌蛋白编码差异表达基因(SP-DEGs),从而发现潜在的治疗靶点。我们检测了8名患有代谢综合征的女性和7名体重正常的健康女性的基因表达谱。共筛选到143个sp - deg,其中上调基因83个,下调基因60个。这些SP-DEGs的氧化石墨烯分析包括蛋白质水解、血管生成、内皮细胞增殖的正调节、免疫反应、蛋白质加工、神经母细胞增殖的正调节、细胞粘附和内质网对高尔基囊泡介导的运输。KEGG通路分析发现SP-DEGs参与tgf - β信号通路、细胞因子-细胞因子受体相互作用、河马信号通路、疟疾。从PPI网络中鉴定出两个模块,即模块1 (DNMT1、KDM1A、NCoR1和E2F1)和模块2 (il - 7r、IL-12A和CSF3)。DNMT1基因在网络模块和WGCNA棕色模块之间共享。单基因GSEA结果显示,DNMT1与组氨酸代谢和苯丙氨酸代谢呈显著正相关。本研究确定了脂肪组织中7个关键的SP-DEGs。DNMT1被认为是代谢综合征发生的中心基因,可能是一个潜在的治疗靶点。
{"title":"Bioinformatics analysis identifies key secretory protein-encoding differentially expressed genes in adipose tissue of metabolic syndrome.","authors":"Jiandong Zhou, Yunshan Guo, Xuan Liu, Weijie Yuan","doi":"10.1080/21623945.2024.2446243","DOIUrl":"https://doi.org/10.1080/21623945.2024.2446243","url":null,"abstract":"<p><p>The objective of this study was to identify key secretory protein-encoding differentially expressed genes (SP-DEGs) in adipose tissue in female metabolic syndrome, thus detecting potential targets in treatment. We examined gene expression profiles in 8 women with metabolic syndrome and 7 healthy, normal body weight women. A total of 143 SP-DEGs were screened, including 83 upregulated genes and 60 downregulated genes. GO analyses of these SP-DEGs included proteolysis, angiogenesis, positive regulation of endothelial cell proliferation, immune response, protein processing, positive regulation of neuroblast proliferation, cell adhesion and ER to Golgi vesicle-mediated transport. KEGG pathway analysis of the SP-DEGs were involved in the TGF-beta signalling pathway, cytokine‒cytokine receptor interactions, the hippo signalling pathway, Malaria. Two modules were identified from the PPI network, namely, Module 1 (DNMT1, KDM1A, NCoR1, and E2F1) and Module 2 (IL-7 R, IL-12A, and CSF3). The gene DNMT1 was shared between the network modules and the WGCNA brown module. According to the single-gene GSEA results, DNMT1 was significantly positively correlated with histidine metabolism and phenylalanine metabolism. This study identified 7 key SP-DEGs in adipose tissue. DNMT1 was selected as the central gene in the development of metabolic syndrome and might be a potential therapeutic target.</p>","PeriodicalId":7226,"journal":{"name":"Adipocyte","volume":"14 1","pages":"2446243"},"PeriodicalIF":3.5,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142998259","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
miR-6402 targets Bmpr2 and negatively regulates mouse adipogenesis.
IF 3.5 4区 生物学 Q2 ENDOCRINOLOGY & METABOLISM Pub Date : 2025-12-01 Epub Date: 2025-03-03 DOI: 10.1080/21623945.2025.2474114
Malaz Elsheikh, Tomomi Sano, Akiko Mizokami, Yusuke Nakatsu, Tomoichiro Asano, Takashi Kanematsu

Obesity is characterized by macrophage infiltration into adipose tissue. White adipose tissue remodelling under inflammatory conditions involves both hypertrophy and adipogenesis and is regulated by transcription factors, which are influenced by bone morphogenetic protein (BMP) signalling. MicroRNAs (miRNAs) regulate gene expression and are involved in obesity-related processes such as adipogenesis. Therefore, we identified differentially expressed miRNAs in the epididymal white adipose tissue (eWAT) of mice fed a normal diet (ND) and those fed a high-fat diet (HFD). The expression of miR-6402 was significantly suppressed in the inflamed eWAT of HFD-fed mice than in ND-fed mice. Furthermore, Bmpr2, the receptor for BMP4, was identified as a target gene of miR-6402. Consistently, miR-6402 was downregulated in the inflamed eWAT of HFD-fed mice and in 3T3-L1 cells (preadipocytes) and differentiated 3T3-L1 cells (mature adipocytes) , and BMPR2 expression in these cells was upregulated. Adipogenesis was induced in WAT by BMP4 injection (in vivo) and in 3T3-L1 cells by BMP4 stimulation (in vitro), both of which were inhibited by miR-6402 transfection. Inflamed eWAT showed higher expression of BMPR2 and the adipogenesis markers C/EBPβ and PPARγ, which was suppressed by miR-6402 transfection. Our findings suggest that miR-6402 is a novel anti-adipogenic miRNA that combats obesity by inhibiting the BMP4/BMPR2 signalling pathway and subsequently reducing adipose tissue expansion.

{"title":"miR-6402 targets <i>Bmpr2</i> and negatively regulates mouse adipogenesis.","authors":"Malaz Elsheikh, Tomomi Sano, Akiko Mizokami, Yusuke Nakatsu, Tomoichiro Asano, Takashi Kanematsu","doi":"10.1080/21623945.2025.2474114","DOIUrl":"10.1080/21623945.2025.2474114","url":null,"abstract":"<p><p>Obesity is characterized by macrophage infiltration into adipose tissue. White adipose tissue remodelling under inflammatory conditions involves both hypertrophy and adipogenesis and is regulated by transcription factors, which are influenced by bone morphogenetic protein (BMP) signalling. MicroRNAs (miRNAs) regulate gene expression and are involved in obesity-related processes such as adipogenesis. Therefore, we identified differentially expressed miRNAs in the epididymal white adipose tissue (eWAT) of mice fed a normal diet (ND) and those fed a high-fat diet (HFD). The expression of miR-6402 was significantly suppressed in the inflamed eWAT of HFD-fed mice than in ND-fed mice. Furthermore, <i>Bmpr2</i>, the receptor for BMP4, was identified as a target gene of miR-6402. Consistently, miR-6402 was downregulated in the inflamed eWAT of HFD-fed mice and in 3T3-L1 cells (preadipocytes) and differentiated 3T3-L1 cells (mature adipocytes) , and BMPR2 expression in these cells was upregulated. Adipogenesis was induced in WAT by BMP4 injection (<i>in vivo</i>) and in 3T3-L1 cells by BMP4 stimulation (<i>in vitro</i>), both of which were inhibited by miR-6402 transfection. Inflamed eWAT showed higher expression of BMPR2 and the adipogenesis markers C/EBPβ and PPARγ, which was suppressed by miR-6402 transfection. Our findings suggest that miR-6402 is a novel anti-adipogenic miRNA that combats obesity by inhibiting the BMP4/BMPR2 signalling pathway and subsequently reducing adipose tissue expansion.</p>","PeriodicalId":7226,"journal":{"name":"Adipocyte","volume":"14 1","pages":"2474114"},"PeriodicalIF":3.5,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11881869/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143539782","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correlation analysis of key genes and immune infiltration in visceral adipose tissue and subcutaneous adipose tissue of patients with type 2 diabetes in women. 女性2型糖尿病患者内脏脂肪组织和皮下脂肪组织关键基因与免疫浸润的相关性分析
IF 3.5 4区 生物学 Q2 ENDOCRINOLOGY & METABOLISM Pub Date : 2025-12-01 Epub Date: 2024-12-24 DOI: 10.1080/21623945.2024.2442419
Qian Shi, Yongxin Li, Chunyan Liu, Mengjie Liang, Hefei Zha, Xin Zhang, Fuchun Zhang

Immune cell infiltration into adipose tissue (AT) is a key factor in type 2 diabetes (T2DM). However, research on the impact of fat distribution on immune cells and immune responses in women is still lacking. This study used enrichment, protein-protein interaction network, immune cell infiltration, and correlation analysis to compare the similarities and differences between the transcriptome data of visceral AT (VAT) and subcutprotein-proteinaneous AT (SAT) obtained from the omprehensive database of gene expression in women with non-T2DM and T2DM. DEGs with the same biological function in two types of ATs often exhibited different expression trends. SharedVAT-specific and SAT-specific hub genes were mainly associated with transcription factors, monocyte-macrophage markers, and chemokines, respectively. Immune cells affected by both AT types included monocytes, granulocytes, T and B lymphocytes, and NK cells. VAT affected more immune cells, mainly myeloid cells. Shared hub genes in VAT correlated positively with M1 macrophages, suggesting pro-inflammatory effects, while those in SAT correlated negatively with M1 macrophages and lymphocytes, suggesting anti-inflammatory effects. This study provides a theoretical basis for further understanding the correlation between AT and T2DM in women.

免疫细胞浸润到脂肪组织(AT)是2型糖尿病(T2DM)的一个关键因素。然而,关于脂肪分布对女性免疫细胞和免疫反应的影响的研究仍然缺乏。本研究采用富集、蛋白-蛋白相互作用网络、免疫细胞浸润、相关性分析等方法,比较了从非T2DM和T2DM女性基因表达综合数据库中获得的脏器AT (VAT)和亚cutprotein-proteinaneous AT (SAT)转录组数据的异同。具有相同生物学功能的deg在两类ATs中往往表现出不同的表达趋势。sharedvat特异性中枢基因和sat特异性中枢基因主要分别与转录因子、单核巨噬细胞标志物和趋化因子相关。受两种AT影响的免疫细胞包括单核细胞、粒细胞、T淋巴细胞和B淋巴细胞以及NK细胞。VAT影响更多的免疫细胞,主要是骨髓细胞。VAT中共享枢纽基因与M1巨噬细胞正相关,提示有促炎作用,而SAT中共享枢纽基因与M1巨噬细胞和淋巴细胞负相关,提示有抗炎作用。本研究为进一步了解女性AT与T2DM的相关性提供了理论基础。
{"title":"Correlation analysis of key genes and immune infiltration in visceral adipose tissue and subcutaneous adipose tissue of patients with type 2 diabetes in women.","authors":"Qian Shi, Yongxin Li, Chunyan Liu, Mengjie Liang, Hefei Zha, Xin Zhang, Fuchun Zhang","doi":"10.1080/21623945.2024.2442419","DOIUrl":"https://doi.org/10.1080/21623945.2024.2442419","url":null,"abstract":"<p><p>Immune cell infiltration into adipose tissue (AT) is a key factor in type 2 diabetes (T2DM). However, research on the impact of fat distribution on immune cells and immune responses in women is still lacking. This study used enrichment, protein-protein interaction network, immune cell infiltration, and correlation analysis to compare the similarities and differences between the transcriptome data of visceral AT (VAT) and subcutprotein-proteinaneous AT (SAT) obtained from the omprehensive database of gene expression in women with non-T2DM and T2DM. DEGs with the same biological function in two types of ATs often exhibited different expression trends. SharedVAT-specific and SAT-specific hub genes were mainly associated with transcription factors, monocyte-macrophage markers, and chemokines, respectively. Immune cells affected by both AT types included monocytes, granulocytes, T and B lymphocytes, and NK cells. VAT affected more immune cells, mainly myeloid cells. Shared hub genes in VAT correlated positively with M1 macrophages, suggesting pro-inflammatory effects, while those in SAT correlated negatively with M1 macrophages and lymphocytes, suggesting anti-inflammatory effects. This study provides a theoretical basis for further understanding the correlation between AT and T2DM in women.</p>","PeriodicalId":7226,"journal":{"name":"Adipocyte","volume":"14 1","pages":"2442419"},"PeriodicalIF":3.5,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142881051","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Disrupted adipokine secretion and inflammatory responses in human adipocyte hypertrophy.
IF 3.5 4区 生物学 Q2 ENDOCRINOLOGY & METABOLISM Pub Date : 2025-12-01 Epub Date: 2025-04-03 DOI: 10.1080/21623945.2025.2485927
Dan Gao, Chen Bing, Helen R Griffiths

Adipocyte hypertrophy is a critical contributor to obesity-induced inflammation and insulin resistance. This study employed a human adipocyte hypertrophy model to investigate the adipokine release, inflammatory responses, and the intracellular singling pathways. Hypertrophic adipocytes exhibited increased lipid content and lipolysis, a decline of anti-inflammatory adipokine adiponectin release and an increase of pro-inflammatory adipokine leptin release compared to mature adipocytes. Moreover, TNFα and LPS exacerbated the decrease in adiponectin secretion by hypertrophic adipocytes while promoting the secretion of leptin, MCP-1 and IL-6, which is associated with impaired activation of p38 and JNK MAPK and persistent activation of ERK and IκBα in hypertrophic adipocytes. These altered adipokine secretions and inflammatory responses within hypertrophic adipocytes may contribute to adipocyte dysfunction in human obesity.

{"title":"Disrupted adipokine secretion and inflammatory responses in human adipocyte hypertrophy.","authors":"Dan Gao, Chen Bing, Helen R Griffiths","doi":"10.1080/21623945.2025.2485927","DOIUrl":"10.1080/21623945.2025.2485927","url":null,"abstract":"<p><p>Adipocyte hypertrophy is a critical contributor to obesity-induced inflammation and insulin resistance. This study employed a human adipocyte hypertrophy model to investigate the adipokine release, inflammatory responses, and the intracellular singling pathways. Hypertrophic adipocytes exhibited increased lipid content and lipolysis, a decline of anti-inflammatory adipokine adiponectin release and an increase of pro-inflammatory adipokine leptin release compared to mature adipocytes. Moreover, TNFα and LPS exacerbated the decrease in adiponectin secretion by hypertrophic adipocytes while promoting the secretion of leptin, MCP-1 and IL-6, which is associated with impaired activation of p38 and JNK MAPK and persistent activation of ERK and IκBα in hypertrophic adipocytes. These altered adipokine secretions and inflammatory responses within hypertrophic adipocytes may contribute to adipocyte dysfunction in human obesity.</p>","PeriodicalId":7226,"journal":{"name":"Adipocyte","volume":"14 1","pages":"2485927"},"PeriodicalIF":3.5,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143771183","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Adipose tissue and adipose-derived stromal cells can reduce skin contraction in an in vitro tissue engineered full thickness skin model.
IF 3.5 4区 生物学 Q2 ENDOCRINOLOGY & METABOLISM Pub Date : 2025-12-01 Epub Date: 2025-03-19 DOI: 10.1080/21623945.2025.2473367
Victoria L Workman, Anna-Victoria Giblin, Nicola H Green, Sheila MacNeil, Vanessa Hearnden

Skin contracts during wound healing to facilitate wound closure. In some patients, skin contraction can lead to the formation of skin contractures that limit movement, impair function, and significantly impact well-being. Current treatment options for skin contractures are burdensome for patients, and there is a high risk of recurrence. Autologous fat grafting can improve the structure and function of scarred skin; however, relatively little is known about the effect of fat on skin contraction. In this study, an in vitro tissue-engineered model of human skin was used to test the effects of adipose tissue and adipose-derived stromal cells on skin contraction. Untreated tissue-engineered skin contracted to approximately 60% of the original area over 14 days in culture. The addition of adipose tissue reduced this contraction by 50%. Adipose tissue, which was emulsified or concentrated and high doses of adipose-derived stromal cells (ADSC) were able to inhibit contraction to a similar degree; however, lower doses of ADSC did not show the same effect. In conclusion, the subcutaneous application of adipose tissue has the potential to inhibit skin contraction. This study provides in vitro evidence to support the use of autologous fat grafting to prevent skin contraction in patients most at risk.

{"title":"Adipose tissue and adipose-derived stromal cells can reduce skin contraction in an <i>in vitro</i> tissue engineered full thickness skin model.","authors":"Victoria L Workman, Anna-Victoria Giblin, Nicola H Green, Sheila MacNeil, Vanessa Hearnden","doi":"10.1080/21623945.2025.2473367","DOIUrl":"https://doi.org/10.1080/21623945.2025.2473367","url":null,"abstract":"<p><p>Skin contracts during wound healing to facilitate wound closure. In some patients, skin contraction can lead to the formation of skin contractures that limit movement, impair function, and significantly impact well-being. Current treatment options for skin contractures are burdensome for patients, and there is a high risk of recurrence. Autologous fat grafting can improve the structure and function of scarred skin; however, relatively little is known about the effect of fat on skin contraction. In this study, an in vitro tissue-engineered model of human skin was used to test the effects of adipose tissue and adipose-derived stromal cells on skin contraction. Untreated tissue-engineered skin contracted to approximately 60% of the original area over 14 days in culture. The addition of adipose tissue reduced this contraction by 50%. Adipose tissue, which was emulsified or concentrated and high doses of adipose-derived stromal cells (ADSC) were able to inhibit contraction to a similar degree; however, lower doses of ADSC did not show the same effect. In conclusion, the subcutaneous application of adipose tissue has the potential to inhibit skin contraction. This study provides in vitro evidence to support the use of autologous fat grafting to prevent skin contraction in patients most at risk.</p>","PeriodicalId":7226,"journal":{"name":"Adipocyte","volume":"14 1","pages":"2473367"},"PeriodicalIF":3.5,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143655606","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Adipogenic dedifferentiation enhances survival of human umbilical cord-derived mesenchymal stem cells under oxidative stress.
IF 3.5 4区 生物学 Q2 ENDOCRINOLOGY & METABOLISM Pub Date : 2025-12-01 Epub Date: 2025-02-20 DOI: 10.1080/21623945.2025.2467150
Yin Yuan, Meina Kuang, Tengye Yu, Sirui Huang, Fujie Jiang, Biyi Lu, Mingen Cai, Xin Lu

Mesenchymal stem cells (MSCs) serve as ideal candidates for a broad range of cell-based therapies. However, cell ageing caused by long-term in vitro expansion and poor survival after in vivo delivery greatly limits their success in preclinical and clinical applications. Dedifferentiation represents a potential strategy for enhancing the retention and function of MSCs in hostile environments. In this study, we evaluated the cell phenotype, proliferation, and differentiation potential, as well as the anti-oxidative stress ability of human umbilical cord-derived MSCs (hMSCs) manipulated with adipogenic priming and subsequent dedifferentiation. After an in vitro differentiation and dedifferentiation procedure, the resultant dedifferentiated hMSCs (De-hMSCs) displayed properties similar to their original counterparts, including immunophenotype and mesodermal potential. Upon re-induction, De-hMSCs exhibited a significantly higher adipogenic differentiation capability than unmanipulated hMSCs. Importantly, De-hMSCs showed a significantly enhanced ability to resist tert-butyl hydroperoxide (t-BHP) induced apoptosis compared to undifferentiated hMSCs. Mechanisms involving bcl-2 family proteins and autophagy may contribute to the demonstrated advantages of dedifferentiation-reprogrammed hMSCs. These results indicate that adipogenic dedifferentiation promotes adipogenesis and cell persistence, as well as preserves the stemness of human umbilical cord-derived MSCs that have been committed to the adipocytic lineage. As a unique stem cell population, dedifferentiated MSCs may represent an attractive and promising candidate for MSC-based therapy.

{"title":"Adipogenic dedifferentiation enhances survival of human umbilical cord-derived mesenchymal stem cells under oxidative stress.","authors":"Yin Yuan, Meina Kuang, Tengye Yu, Sirui Huang, Fujie Jiang, Biyi Lu, Mingen Cai, Xin Lu","doi":"10.1080/21623945.2025.2467150","DOIUrl":"10.1080/21623945.2025.2467150","url":null,"abstract":"<p><p>Mesenchymal stem cells (MSCs) serve as ideal candidates for a broad range of cell-based therapies. However, cell ageing caused by long-term in vitro expansion and poor survival after in vivo delivery greatly limits their success in preclinical and clinical applications. Dedifferentiation represents a potential strategy for enhancing the retention and function of MSCs in hostile environments. In this study, we evaluated the cell phenotype, proliferation, and differentiation potential, as well as the anti-oxidative stress ability of human umbilical cord-derived MSCs (hMSCs) manipulated with adipogenic priming and subsequent dedifferentiation. After an in vitro differentiation and dedifferentiation procedure, the resultant dedifferentiated hMSCs (De-hMSCs) displayed properties similar to their original counterparts, including immunophenotype and mesodermal potential. Upon re-induction, De-hMSCs exhibited a significantly higher adipogenic differentiation capability than unmanipulated hMSCs. Importantly, De-hMSCs showed a significantly enhanced ability to resist tert-butyl hydroperoxide (t-BHP) induced apoptosis compared to undifferentiated hMSCs. Mechanisms involving bcl-2 family proteins and autophagy may contribute to the demonstrated advantages of dedifferentiation-reprogrammed hMSCs. These results indicate that adipogenic dedifferentiation promotes adipogenesis and cell persistence, as well as preserves the stemness of human umbilical cord-derived MSCs that have been committed to the adipocytic lineage. As a unique stem cell population, dedifferentiated MSCs may represent an attractive and promising candidate for MSC-based therapy.</p>","PeriodicalId":7226,"journal":{"name":"Adipocyte","volume":"14 1","pages":"2467150"},"PeriodicalIF":3.5,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11845070/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143456410","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pharmacological inhibition of SUMOylation with TAK-981 mimics genetic HypoSUMOylation in murine perigonadal white adipose tissue.
IF 3.5 4区 生物学 Q2 ENDOCRINOLOGY & METABOLISM Pub Date : 2025-12-01 Epub Date: 2025-03-06 DOI: 10.1080/21623945.2025.2474107
Damien Dufour, Xu Zhao, Florian Chaleil, Patrizia Maria Christiane Nothnagel, Magnar Bjørås, Anne-Marie Lefrançois-Martinez, Antoine Martinez, Pierre Chymkowitch

Post-translational modification by the small ubiquitin-like modifier (SUMO) is essential for cellular differentiation and homeostasis. Here, we investigate the role of SUMOylation in adipose tissue development using TAK-981, a pharmacological inhibitor of SUMOylation. Administration of TAK-981 to mice resulted in significant defect in weight gain and adipocyte atrophy in perigonadal white adipose tissue (gWAT) depots. Gene expression analyses revealed a marked downregulation of adipogenic genes, including Pparg, Cebpa, and Fasn. Our data thus indicate that TAK-981 treatment impaired adipogenesis in gWAT, consistent with prior findings that SUMOylation supports transcriptional regulation of adipogenesis and lipid metabolism. We also found significant infiltration of immune cells and efferocytosis in gWAT. Our results thus indicate that SUMOylation inhibition using a small molecule phenocopies genetic hypoSUMOylation models, highlighting its critical role in maintaining adipocyte functionality and immune environment. These findings provide evidence that SUMOylation is essential for fat accumulation in vivo. Furthermore, given that TAK-981 is currently under clinical evaluation for the treatment of solid tumors, our results underscore the importance of considering the potential unintended effects of SUMOylation inhibition on adipose tissue in patients.

{"title":"Pharmacological inhibition of SUMOylation with TAK-981 mimics genetic HypoSUMOylation in murine perigonadal white adipose tissue.","authors":"Damien Dufour, Xu Zhao, Florian Chaleil, Patrizia Maria Christiane Nothnagel, Magnar Bjørås, Anne-Marie Lefrançois-Martinez, Antoine Martinez, Pierre Chymkowitch","doi":"10.1080/21623945.2025.2474107","DOIUrl":"10.1080/21623945.2025.2474107","url":null,"abstract":"<p><p>Post-translational modification by the small ubiquitin-like modifier (SUMO) is essential for cellular differentiation and homeostasis. Here, we investigate the role of SUMOylation in adipose tissue development using TAK-981, a pharmacological inhibitor of SUMOylation. Administration of TAK-981 to mice resulted in significant defect in weight gain and adipocyte atrophy in perigonadal white adipose tissue (gWAT) depots. Gene expression analyses revealed a marked downregulation of adipogenic genes, including <i>Pparg</i>, <i>Cebpa</i>, and <i>Fasn</i>. Our data thus indicate that TAK-981 treatment impaired adipogenesis in gWAT, consistent with prior findings that SUMOylation supports transcriptional regulation of adipogenesis and lipid metabolism. We also found significant infiltration of immune cells and efferocytosis in gWAT. Our results thus indicate that SUMOylation inhibition using a small molecule phenocopies genetic hypoSUMOylation models, highlighting its critical role in maintaining adipocyte functionality and immune environment. These findings provide evidence that SUMOylation is essential for fat accumulation <i>in vivo</i>. Furthermore, given that TAK-981 is currently under clinical evaluation for the treatment of solid tumors, our results underscore the importance of considering the potential unintended effects of SUMOylation inhibition on adipose tissue in patients.</p>","PeriodicalId":7226,"journal":{"name":"Adipocyte","volume":"14 1","pages":"2474107"},"PeriodicalIF":3.5,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11901380/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143565578","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Anti-inflammatory effect of Angiotensin 1-7 in white adipose tissue. 血管紧张素1-7在白色脂肪组织中的抗炎作用。
IF 3.5 4区 生物学 Q2 ENDOCRINOLOGY & METABOLISM Pub Date : 2025-12-01 Epub Date: 2025-01-13 DOI: 10.1080/21623945.2024.2449027
Nozomi Nishida, Satoru Sugimoto, Satoshi Miyagaki, Chiharu Cho, Madoka Konishi, Takeshi Goda, Mihoko Yamaguchi, Yasuhiro Kawabe, Hidechika Morimoto, Joji Kusuyama, Takuro Okamura, Masahide Hamaguchi, Jun Mori, Hisakazu Nakajima, Michiaki Fukui, Tomoko Iehara

Obesity is a global health concern that promotes chronic low-grade inflammation, leading to insulin resistance, a key factor in many metabolic diseases. Angiotensin 1-7 (Ang 1-7), a component of the renin-angiotensin system (RAS), exhibits anti-inflammatory effects in obesity and related disorders, though its mechanisms remain unclear. In this study, we examined the effect of Ang 1-7 on inflammation of white adipose tissue (WAT) in dietary-induced obese mice. Monocyte chemoattractant protein-1 (MCP-1) produced by white adipocytes and tumour necrosis factor-α (TNF-α) produced by macrophages are pro-inflammatory cytokines and interact to form a pathogenic loop to exacerbate obesity-induced inflammation. We found that Ang 1-7 reduced MCP-1 and TNF-α gene expressions and the number of crown-like structures, which are histological hallmarks of the pro-inflammatory process, in visceral epididymal WAT (eWAT) and reduced circulating MCP-1 and TNF-α levels, accompanied by improvement in insulin resistance, in dietary-induced obese mice. Furthermore, Ang 1-7 reduced MCP-1 and TNF-α secretions in 3T3-L1 white adipocytes and RAW 264.7 macrophages, respectively, which are in vitro experimental models mimicking obesity condition. Our results suggest that Ang 1-7 directly acts on WAT to mitigate obesity-induced inflammation. Thus, this study provides novel insights into the underlying mechanism of anti-obesity effects of Ang 1-7.

肥胖是一个全球性的健康问题,它促进慢性低度炎症,导致胰岛素抵抗,这是许多代谢性疾病的一个关键因素。血管紧张素1-7 (Ang 1-7)是肾素-血管紧张素系统(RAS)的一个组成部分,在肥胖和相关疾病中表现出抗炎作用,尽管其机制尚不清楚。在本研究中,我们检测了Ang 1-7对饮食性肥胖小鼠白色脂肪组织(WAT)炎症的影响。白色脂肪细胞产生的单核细胞趋化蛋白-1 (MCP-1)和巨噬细胞产生的肿瘤坏死因子-α (TNF-α)是促炎细胞因子,它们相互作用形成致病回路,加剧肥胖引起的炎症。我们发现Ang 1-7降低了内脏附睾WAT (eWAT)中MCP-1和TNF-α基因的表达和冠状结构的数量,这是促炎过程的组织学标志,并降低了循环MCP-1和TNF-α水平,同时改善了饮食诱导的肥胖小鼠的胰岛素抵抗。此外,Ang 1-7分别降低了3T3-L1白色脂肪细胞和RAW 264.7巨噬细胞MCP-1和TNF-α的分泌,这是模拟肥胖状态的体外实验模型。我们的研究结果表明,Ang 1-7直接作用于WAT以减轻肥胖引起的炎症。因此,本研究为ang1 -7抗肥胖作用的潜在机制提供了新的见解。
{"title":"Anti-inflammatory effect of Angiotensin 1-7 in white adipose tissue.","authors":"Nozomi Nishida, Satoru Sugimoto, Satoshi Miyagaki, Chiharu Cho, Madoka Konishi, Takeshi Goda, Mihoko Yamaguchi, Yasuhiro Kawabe, Hidechika Morimoto, Joji Kusuyama, Takuro Okamura, Masahide Hamaguchi, Jun Mori, Hisakazu Nakajima, Michiaki Fukui, Tomoko Iehara","doi":"10.1080/21623945.2024.2449027","DOIUrl":"10.1080/21623945.2024.2449027","url":null,"abstract":"<p><p>Obesity is a global health concern that promotes chronic low-grade inflammation, leading to insulin resistance, a key factor in many metabolic diseases. Angiotensin 1-7 (Ang 1-7), a component of the renin-angiotensin system (RAS), exhibits anti-inflammatory effects in obesity and related disorders, though its mechanisms remain unclear. In this study, we examined the effect of Ang 1-7 on inflammation of white adipose tissue (WAT) in dietary-induced obese mice. Monocyte chemoattractant protein-1 (MCP-1) produced by white adipocytes and tumour necrosis factor-α (TNF-α) produced by macrophages are pro-inflammatory cytokines and interact to form a pathogenic loop to exacerbate obesity-induced inflammation. We found that Ang 1-7 reduced MCP-1 and TNF-α gene expressions and the number of crown-like structures, which are histological hallmarks of the pro-inflammatory process, in visceral epididymal WAT (eWAT) and reduced circulating MCP-1 and TNF-α levels, accompanied by improvement in insulin resistance, in dietary-induced obese mice. Furthermore, Ang 1-7 reduced MCP-1 and TNF-α secretions in 3T3-L1 white adipocytes and RAW 264.7 macrophages, respectively, which are <i>in vitro</i> experimental models mimicking obesity condition. Our results suggest that Ang 1-7 directly acts on WAT to mitigate obesity-induced inflammation. Thus, this study provides novel insights into the underlying mechanism of anti-obesity effects of Ang 1-7.</p>","PeriodicalId":7226,"journal":{"name":"Adipocyte","volume":"14 1","pages":"2449027"},"PeriodicalIF":3.5,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11730366/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142969170","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effects of alpelisib treatment on murine Pten-deficient lipomas.
IF 3.5 4区 生物学 Q2 ENDOCRINOLOGY & METABOLISM Pub Date : 2025-12-01 Epub Date: 2025-02-17 DOI: 10.1080/21623945.2025.2468275
Lea M Merz, Karsten Winter, Sandy Richter, Sonja Kallendrusch, Andreas Horn, Sonja Grunewald, Nora Klöting, Kerstin Krause, Wieland Kiess, Diana Le Duc, Antje Garten

 Phosphatase and tensin homolog (PTEN) hamartoma tumour syndrome (PHTS) is a rare disorder caused by germline mutations in the tumour suppressor gene PTEN, a key negative regulator of phosphatidylinositol 3-kinase (PI3K)/AKT signalling. Children with PHTS often develop lipomas, for which only surgical resection is available as treatment. We investigated the effects of the selective PI3K-inhibitor alpelisib on Pten-deficient lipomas. After incubation with alpelisib or the non-selective PI3K inhibitor wortmannin, we analysed histology, gene expression, and Pi3k pathway in lipoma and control epididymal adipose tissue (epiWAT). Alpelisib increased adipocyte area in lipomas compared to epiWAT. Baseline gene expression showed higher levels of markers for proliferation (Pcna), fibrosis (Tgfb1), and adipogenesis (Pparg) in lipomas, while hormone-sensitive lipase expression was lower than in epiWAT. Following alpelisib incubation, target genes of Pi3k signalling and extracellular matrix factors were reduced. We confirmed Pi3k inhibition through detecting decreased Akt levels compared to control treatment. Human lipoma samples treated with alpelisib showed variable lipolysis responses, suggesting variability in therapeutic outcomes. We established an ex vivo model to study alpelisib effects on Pten-deficient lipomas. These results underscore the therapeutic potential of targeted PI3K inhibition in the treatment of PHTS-associated lipomas, particularly in cases that are inoperable.

{"title":"Effects of alpelisib treatment on murine <i>Pten</i>-deficient lipomas.","authors":"Lea M Merz, Karsten Winter, Sandy Richter, Sonja Kallendrusch, Andreas Horn, Sonja Grunewald, Nora Klöting, Kerstin Krause, Wieland Kiess, Diana Le Duc, Antje Garten","doi":"10.1080/21623945.2025.2468275","DOIUrl":"10.1080/21623945.2025.2468275","url":null,"abstract":"<p><p> Phosphatase and tensin homolog (PTEN) hamartoma tumour syndrome (PHTS) is a rare disorder caused by germline mutations in the tumour suppressor gene PTEN, a key negative regulator of phosphatidylinositol 3-kinase (PI3K)/AKT signalling. Children with PHTS often develop lipomas, for which only surgical resection is available as treatment. We investigated the effects of the selective PI3K-inhibitor alpelisib on Pten-deficient lipomas. After incubation with alpelisib or the non-selective PI3K inhibitor wortmannin, we analysed histology, gene expression, and Pi3k pathway in lipoma and control epididymal adipose tissue (epiWAT). Alpelisib increased adipocyte area in lipomas compared to epiWAT. Baseline gene expression showed higher levels of markers for proliferation (<i>Pcna</i>), fibrosis (<i>Tgfb1</i>), and adipogenesis (<i>Pparg</i>) in lipomas, while hormone-sensitive lipase expression was lower than in epiWAT. Following alpelisib incubation, target genes of Pi3k signalling and extracellular matrix factors were reduced. We confirmed Pi3k inhibition through detecting decreased Akt levels compared to control treatment. Human lipoma samples treated with alpelisib showed variable lipolysis responses, suggesting variability in therapeutic outcomes. We established an ex vivo model to study alpelisib effects on Pten-deficient lipomas. These results underscore the therapeutic potential of targeted PI3K inhibition in the treatment of PHTS-associated lipomas, particularly in cases that are inoperable.</p>","PeriodicalId":7226,"journal":{"name":"Adipocyte","volume":"14 1","pages":"2468275"},"PeriodicalIF":3.5,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11844927/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143439506","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Involvement of a battery of investigated genes in lipid droplet pathophysiology and associated comorbidities. 脂滴病理生理学和相关并发症中的一系列研究基因的参与。
IF 3.5 4区 生物学 Q2 ENDOCRINOLOGY & METABOLISM Pub Date : 2024-12-01 Epub Date: 2024-09-27 DOI: 10.1080/21623945.2024.2403380
Sami N Al Harake, Yasamin Abedin, Fatema Hatoum, Nour Zahraa Nassar, Ali Ali, Aline Nassar, Amjad Kanaan, Samer Bazzi, Sami Azar, Frederic Harb, Hilda E Ghadieh

Lipid droplets (LDs) are highly specialized energy storage organelles involved in the maintenance of lipid homoeostasis by regulating lipid flux within white adipose tissue (WAT). The physiological function of adipocytes and LDs can be compromised by mutations in several genes, leading to NEFA-induced lipotoxicity, which ultimately manifests as metabolic complications, predominantly in the form of dyslipidemia, ectopic fat accumulation, and insulin resistance. In this review, we delineate the effects of mutations and deficiencies in genes - CIDEC, PPARG, BSCL2, AGPAT2, PLIN1, LIPE, LMNA, CAV1, CEACAM1, and INSR - involved in lipid droplet metabolism and their associated pathophysiological impairments, highlighting their roles in the development of lipodystrophies and metabolic dysfunction.

脂滴(LDs)是高度特化的储能细胞器,通过调节白脂肪组织(WAT)内的脂质通量来维持脂质平衡。脂肪细胞和 LDs 的生理功能可因多个基因突变而受损,导致 NEFA 诱导的脂肪毒性,最终表现为代谢并发症,主要表现为血脂异常、异位脂肪堆积和胰岛素抵抗。在这篇综述中,我们阐述了参与脂滴代谢的 CIDEC、PPARG、BSCL2、AGPAT2、PLIN1、LIPE、LMNA、CAV1、CEACAM1 和 INSR 基因突变和缺失的影响及其相关的病理生理学损伤,强调了它们在脂肪营养不良和代谢功能障碍的发生中的作用。
{"title":"Involvement of a battery of investigated genes in lipid droplet pathophysiology and associated comorbidities.","authors":"Sami N Al Harake, Yasamin Abedin, Fatema Hatoum, Nour Zahraa Nassar, Ali Ali, Aline Nassar, Amjad Kanaan, Samer Bazzi, Sami Azar, Frederic Harb, Hilda E Ghadieh","doi":"10.1080/21623945.2024.2403380","DOIUrl":"10.1080/21623945.2024.2403380","url":null,"abstract":"<p><p>Lipid droplets (LDs) are highly specialized energy storage organelles involved in the maintenance of lipid homoeostasis by regulating lipid flux within white adipose tissue (WAT). The physiological function of adipocytes and LDs can be compromised by mutations in several genes, leading to NEFA-induced lipotoxicity, which ultimately manifests as metabolic complications, predominantly in the form of dyslipidemia, ectopic fat accumulation, and insulin resistance. In this review, we delineate the effects of mutations and deficiencies in genes - <i>CIDEC</i>, <i>PPARG</i>, <i>BSCL2</i>, <i>AGPAT2</i>, <i>PLIN1</i>, <i>LIPE</i>, <i>LMNA</i>, <i>CAV1</i>, <i>CEACAM1</i>, and <i>INSR</i> - involved in lipid droplet metabolism and their associated pathophysiological impairments, highlighting their roles in the development of lipodystrophies and metabolic dysfunction.</p>","PeriodicalId":7226,"journal":{"name":"Adipocyte","volume":"13 1","pages":"2403380"},"PeriodicalIF":3.5,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11445895/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142339134","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Adipocyte
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1