Single-cell phylodynamic inference of stem cell differentiation and tumor evolution.

IF 7.7 Cell systems Pub Date : 2025-05-21 Epub Date: 2025-04-01 DOI:10.1016/j.cels.2025.101244
Kun Wang, Zhaolian Lu, Zeqi Yao, Xionglei He, Zheng Hu, Da Zhou
{"title":"Single-cell phylodynamic inference of stem cell differentiation and tumor evolution.","authors":"Kun Wang, Zhaolian Lu, Zeqi Yao, Xionglei He, Zheng Hu, Da Zhou","doi":"10.1016/j.cels.2025.101244","DOIUrl":null,"url":null,"abstract":"<p><p>Phylodynamic inference (PI) quantifies population dynamics and evolutionary trajectories using phylogenetic trees. Single-cell lineage tracing enables phylogenetic tree reconstruction for thousands of cells in multicellular organisms, facilitating PI at the cellular level. However, cell differentiation and somatic evolution challenge the direct application of existing PI frameworks to somatic tissues. We introduce scPhyloX, a computational framework modeling structured cell populations by leveraging single-cell phylogenetic trees to infer tissue development and tumor evolution dynamics. A key advancement is its ability to infer time-varying parameters, capturing dynamic biological processes. Simulations demonstrate scPhyloX's accuracy in scenarios including tissue development, disease treatment, and tumor growth. Application to three real datasets reveals insights into somatic dynamics: cycling stem cell overshoot in fly organ development, clonal expansion of multipotent hematopoietic progenitors during human aging, and pronounced subclonal selection in early colorectal tumorigenesis. scPhyloX thus provides a computational approach for investigating somatic tissue development and evolution.</p>","PeriodicalId":93929,"journal":{"name":"Cell systems","volume":" ","pages":"101244"},"PeriodicalIF":7.7000,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.cels.2025.101244","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/1 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Phylodynamic inference (PI) quantifies population dynamics and evolutionary trajectories using phylogenetic trees. Single-cell lineage tracing enables phylogenetic tree reconstruction for thousands of cells in multicellular organisms, facilitating PI at the cellular level. However, cell differentiation and somatic evolution challenge the direct application of existing PI frameworks to somatic tissues. We introduce scPhyloX, a computational framework modeling structured cell populations by leveraging single-cell phylogenetic trees to infer tissue development and tumor evolution dynamics. A key advancement is its ability to infer time-varying parameters, capturing dynamic biological processes. Simulations demonstrate scPhyloX's accuracy in scenarios including tissue development, disease treatment, and tumor growth. Application to three real datasets reveals insights into somatic dynamics: cycling stem cell overshoot in fly organ development, clonal expansion of multipotent hematopoietic progenitors during human aging, and pronounced subclonal selection in early colorectal tumorigenesis. scPhyloX thus provides a computational approach for investigating somatic tissue development and evolution.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
干细胞分化和肿瘤进化的单细胞系统动力学推断。
系统动力学推断(PI)利用系统发生树来量化种群动态和进化轨迹。单细胞谱系追踪可以重建多细胞生物中数千个细胞的系统发育树,促进细胞水平的PI。然而,细胞分化和体细胞进化挑战了现有PI框架在体细胞组织中的直接应用。我们介绍了scPhyloX,这是一个计算框架,通过利用单细胞系统发育树来推断组织发育和肿瘤进化动力学来建模结构细胞群体。一个关键的进步是它能够推断时变参数,捕捉动态的生物过程。模拟证明了scPhyloX在组织发育、疾病治疗和肿瘤生长等场景中的准确性。对三个真实数据集的应用揭示了体细胞动力学的见解:苍蝇器官发育中的循环干细胞超调,人类衰老过程中多能造血祖细胞的克隆扩增,以及早期结直肠肿瘤发生中的明显亚克隆选择。因此,scPhyloX为研究体细胞组织的发育和进化提供了一种计算方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
DynamicGT: A dynamic-aware geometric transformer model to predict protein-binding interfaces in flexible and disordered regions. Core passive and facultative mTOR-mediated mechanisms coordinate mammalian protein synthesis and decay. Transgene integration in mammalian cells: The tools, the challenges, and the future. Translating synthetic gene circuits into the clinic: Challenges, opportunities, and future directions. Low-burden and precursor-free cell-cell communication in mammalian cells enabled by denovo design of super-sensitive intercellular signals.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1