Thermoelectric and Optical Properties of HfSi2N4 and HfGe2N4: A First-Principles Investigation

IF 2.9 4区 工程技术 Q1 MULTIDISCIPLINARY SCIENCES Advanced Theory and Simulations Pub Date : 2025-04-03 DOI:10.1002/adts.202500223
Chayan Das,  Abhishek, Dibyajyoti Saikia, Appala Naidu Gandi, Satyajit Sahu
{"title":"Thermoelectric and Optical Properties of HfSi2N4 and HfGe2N4: A First-Principles Investigation","authors":"Chayan Das,&nbsp; Abhishek,&nbsp;Dibyajyoti Saikia,&nbsp;Appala Naidu Gandi,&nbsp;Satyajit Sahu","doi":"10.1002/adts.202500223","DOIUrl":null,"url":null,"abstract":"<p>This study explores the thermoelectric and optoelectronic properties of HfSi₂N₄ and HfGe₂N₄ monolayers (ML) through first-principles calculations. Both materials exhibit excellent structural stability, as confirmed by phonon dispersion and ab initio molecular dynamics simulations. HfSi₂N₄ demonstrates superior power factors and higher thermal conductivity, while HfGe₂N₄ achieves a remarkable thermoelectric figure of merit (<span></span><math>\n <semantics>\n <mrow>\n <mi>Z</mi>\n <mi>T</mi>\n </mrow>\n <annotation>$ZT$</annotation>\n </semantics></math>) of 0.92 at 900 K under p-type doping, surpassing many 2D materials. The inclusion of spin-orbit coupling further enhances the thermoelectric performance, especially for HfGe₂N₄. The electronic properties reveal indirect bandgaps of 2.89 eV for HfSi₂N₄ and 2.75 eV for HfGe₂N₄, with strong optical absorption peaks in the visible range, making them suitable for optoelectronic applications. The materials exhibit high carrier mobility, with HfSi₂N₄ reaching 582 cm<sup>2</sup>V⁻¹s⁻¹ and HfGe₂N₄ achieving an impressive 1870 cm<sup>2</sup>V⁻¹s⁻¹ for holes. Thermal conductivity analysis reveals that HfGe₂N₄ has significantly lower values than HfSi₂N₄, favoring thermoelectric efficiency. The synergy of high Seebeck coefficients (<i>S</i>), tunable thermal conductivity, and optical properties makes these monolayers promising candidates for advanced thermoelectric devices and visible-light optoelectronics. This study provides a comprehensive comparison, offering valuable insights into their applicability in next-generation energy conversion and optoelectronic technologies.</p>","PeriodicalId":7219,"journal":{"name":"Advanced Theory and Simulations","volume":"8 8","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Theory and Simulations","FirstCategoryId":"5","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/adts.202500223","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

This study explores the thermoelectric and optoelectronic properties of HfSi₂N₄ and HfGe₂N₄ monolayers (ML) through first-principles calculations. Both materials exhibit excellent structural stability, as confirmed by phonon dispersion and ab initio molecular dynamics simulations. HfSi₂N₄ demonstrates superior power factors and higher thermal conductivity, while HfGe₂N₄ achieves a remarkable thermoelectric figure of merit ( Z T $ZT$ ) of 0.92 at 900 K under p-type doping, surpassing many 2D materials. The inclusion of spin-orbit coupling further enhances the thermoelectric performance, especially for HfGe₂N₄. The electronic properties reveal indirect bandgaps of 2.89 eV for HfSi₂N₄ and 2.75 eV for HfGe₂N₄, with strong optical absorption peaks in the visible range, making them suitable for optoelectronic applications. The materials exhibit high carrier mobility, with HfSi₂N₄ reaching 582 cm2V⁻¹s⁻¹ and HfGe₂N₄ achieving an impressive 1870 cm2V⁻¹s⁻¹ for holes. Thermal conductivity analysis reveals that HfGe₂N₄ has significantly lower values than HfSi₂N₄, favoring thermoelectric efficiency. The synergy of high Seebeck coefficients (S), tunable thermal conductivity, and optical properties makes these monolayers promising candidates for advanced thermoelectric devices and visible-light optoelectronics. This study provides a comprehensive comparison, offering valuable insights into their applicability in next-generation energy conversion and optoelectronic technologies.

Abstract Image

Abstract Image

Abstract Image

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
HfSi2N4和HfGe2N4的热电和光学性质:第一性原理研究
本研究通过第一性原理计算探讨了HfSi₂N₄和HfGe₂N₄单层(ML)的热电和光电子性质。声子色散和从头算分子动力学模拟证实了这两种材料具有优异的结构稳定性。HfSi₂N₄具有优异的功率因数和较高的导热系数,而HfGe₂N₄在p型掺杂下,在900 K时获得了0.92的热电优值(Z¹T$ZT$),超过了许多二维材料。自旋轨道耦合进一步提高了热电性能,特别是对HfGe₂N₄。电子性质表明,HfSi₂N₄的间接带隙为2.89 eV, HfGe₂N₄的间接带隙为2.75 eV,在可见光范围内具有强的光吸收峰,适合光电应用。这些材料表现出很高的载流子迁移率,HfSi₂N₄可以达到582 cm2V⁻¹s⁻¹,HfGe₂N₄可以达到令人印象深刻的1870 cm2V⁻¹。热导率分析表明,HfGe₂N₄明显低于HfSi₂N₄,有利于热电效率的提高。高塞贝克系数(S)、可调热导率和光学性能的协同作用使这些单层膜成为先进热电器件和可见光光电子器件的有希望的候选者。这项研究提供了全面的比较,为它们在下一代能量转换和光电子技术中的适用性提供了有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Theory and Simulations
Advanced Theory and Simulations Multidisciplinary-Multidisciplinary
CiteScore
5.50
自引率
3.00%
发文量
221
期刊介绍: Advanced Theory and Simulations is an interdisciplinary, international, English-language journal that publishes high-quality scientific results focusing on the development and application of theoretical methods, modeling and simulation approaches in all natural science and medicine areas, including: materials, chemistry, condensed matter physics engineering, energy life science, biology, medicine atmospheric/environmental science, climate science planetary science, astronomy, cosmology method development, numerical methods, statistics
期刊最新文献
A First‐Principles Study on the Effect of Rh Content on the Lattice, Electronic and Mechanical Properties of Pt‐Rh Solid Solution Enhanced Selectivity by Planar Hyper‐Coordinate Transition Metals for Biosensing Exploring the Bulk Phase of 2D MA2Z4 Family Quantum Mechanical Transport Analysis in Formamidinium-Based Perovskite Solar Cells Multifunctional Graphene Space–Time Coding Metasurface for Terahertz Holographic Imaging
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1