Yuanxiang Li, Ju Luo, Ferdinand Ndikuryayo, Yuxuan Chen, Guozhen Liu, Wen-Chao Yang
{"title":"Advances in Fluorescence-based Probes for Abiotic Stress Detection in Plants","authors":"Yuanxiang Li, Ju Luo, Ferdinand Ndikuryayo, Yuxuan Chen, Guozhen Liu, Wen-Chao Yang","doi":"10.1021/acssensors.5c00184","DOIUrl":null,"url":null,"abstract":"Abiotic stress poses significant challenges to the ecological environment and global food security. Early and accurate diagnosis of abiotic stress is essential for modern agriculture. Recently, fluorescence sensing technology has emerged as a valuable tool for monitoring abiotic stress due to its ease of use and capability for spatiotemporal visualization. These probes specifically bind to abiotic stress biomarkers, facilitating the detection of stress responses and advancing related biological research. However, there is a lack of comprehensive reviews on fluorescence probe for abiotic stress, which limits progress in this area. This review outlines the biological markers of abiotic stress, discusses the types and design principles of fluorescence probe, and reviews research on detecting plant responses to such stress. Its goal is to inspire the rational design of fluorescence probe for plant bioimaging, promote early diagnosis of abiotic stress, and enhance the understanding of plant defense mechanisms at the molecular level, ultimately providing a scientific basis for stress management in agriculture.","PeriodicalId":24,"journal":{"name":"ACS Sensors","volume":"62 1","pages":""},"PeriodicalIF":9.1000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Sensors","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acssensors.5c00184","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Abiotic stress poses significant challenges to the ecological environment and global food security. Early and accurate diagnosis of abiotic stress is essential for modern agriculture. Recently, fluorescence sensing technology has emerged as a valuable tool for monitoring abiotic stress due to its ease of use and capability for spatiotemporal visualization. These probes specifically bind to abiotic stress biomarkers, facilitating the detection of stress responses and advancing related biological research. However, there is a lack of comprehensive reviews on fluorescence probe for abiotic stress, which limits progress in this area. This review outlines the biological markers of abiotic stress, discusses the types and design principles of fluorescence probe, and reviews research on detecting plant responses to such stress. Its goal is to inspire the rational design of fluorescence probe for plant bioimaging, promote early diagnosis of abiotic stress, and enhance the understanding of plant defense mechanisms at the molecular level, ultimately providing a scientific basis for stress management in agriculture.
期刊介绍:
ACS Sensors is a peer-reviewed research journal that focuses on the dissemination of new and original knowledge in the field of sensor science, particularly those that selectively sense chemical or biological species or processes. The journal covers a broad range of topics, including but not limited to biosensors, chemical sensors, gas sensors, intracellular sensors, single molecule sensors, cell chips, and microfluidic devices. It aims to publish articles that address conceptual advances in sensing technology applicable to various types of analytes or application papers that report on the use of existing sensing concepts in new ways or for new analytes.