{"title":"A computational method for real-time roof defect segmentation in robotic inspection","authors":"Xiayu Zhao, Houtan Jebelli","doi":"10.1111/mice.13471","DOIUrl":null,"url":null,"abstract":"<p>Roof inspections are crucial but perilous, necessitating safer and more cost-effective solutions. While robots offer promising solutions to reduce fall risks, robotic vision systems face efficiency limitations due to computational constraints and scarce specialized data. This study presents real-time roof defect segmentation network (RRD-SegNet), a deep learning framework optimized for mobile robotic platforms. The architecture features a mobile-efficient backbone network for lightweight processing, a defect-specific feature extraction module for improved accuracy, and a regressive detection and classification head for precise defect localization. Trained on the multi-type roof defect segmentation dataset of 1350 annotated images across six defect categories, RRD-SegNet integrates with a roof damage identification module for real-time tracking. The system surpasses state-of-the-art models with 85.2% precision and 76.8% recall while requiring minimal computational resources. Field testing confirms its effectiveness with F1-scores of 0.720–0.945 across defect types at processing speeds of 1.62 ms/frame. This work advances automated inspection in civil engineering by enabling efficient, safe, and accurate roof assessments via mobile robotic platforms.</p>","PeriodicalId":156,"journal":{"name":"Computer-Aided Civil and Infrastructure Engineering","volume":"40 23","pages":"3596-3623"},"PeriodicalIF":9.1000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/mice.13471","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer-Aided Civil and Infrastructure Engineering","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/mice.13471","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Roof inspections are crucial but perilous, necessitating safer and more cost-effective solutions. While robots offer promising solutions to reduce fall risks, robotic vision systems face efficiency limitations due to computational constraints and scarce specialized data. This study presents real-time roof defect segmentation network (RRD-SegNet), a deep learning framework optimized for mobile robotic platforms. The architecture features a mobile-efficient backbone network for lightweight processing, a defect-specific feature extraction module for improved accuracy, and a regressive detection and classification head for precise defect localization. Trained on the multi-type roof defect segmentation dataset of 1350 annotated images across six defect categories, RRD-SegNet integrates with a roof damage identification module for real-time tracking. The system surpasses state-of-the-art models with 85.2% precision and 76.8% recall while requiring minimal computational resources. Field testing confirms its effectiveness with F1-scores of 0.720–0.945 across defect types at processing speeds of 1.62 ms/frame. This work advances automated inspection in civil engineering by enabling efficient, safe, and accurate roof assessments via mobile robotic platforms.
期刊介绍:
Computer-Aided Civil and Infrastructure Engineering stands as a scholarly, peer-reviewed archival journal, serving as a vital link between advancements in computer technology and civil and infrastructure engineering. The journal serves as a distinctive platform for the publication of original articles, spotlighting novel computational techniques and inventive applications of computers. Specifically, it concentrates on recent progress in computer and information technologies, fostering the development and application of emerging computing paradigms.
Encompassing a broad scope, the journal addresses bridge, construction, environmental, highway, geotechnical, structural, transportation, and water resources engineering. It extends its reach to the management of infrastructure systems, covering domains such as highways, bridges, pavements, airports, and utilities. The journal delves into areas like artificial intelligence, cognitive modeling, concurrent engineering, database management, distributed computing, evolutionary computing, fuzzy logic, genetic algorithms, geometric modeling, internet-based technologies, knowledge discovery and engineering, machine learning, mobile computing, multimedia technologies, networking, neural network computing, optimization and search, parallel processing, robotics, smart structures, software engineering, virtual reality, and visualization techniques.