Data-Driven Prediction of Flory–Huggins Parameter for Quantifying Polymer–Solvent Interaction

IF 3.9 3区 工程技术 Q2 ENGINEERING, CHEMICAL Industrial & Engineering Chemistry Research Pub Date : 2025-04-04 DOI:10.1021/acs.iecr.4c04761
Jiayi Zhu, Li-Hong Lin, Haoren Niu, Qiaoyan Shang, Qiang Wang, Fangyou Yan, Jin-Jin Li
{"title":"Data-Driven Prediction of Flory–Huggins Parameter for Quantifying Polymer–Solvent Interaction","authors":"Jiayi Zhu, Li-Hong Lin, Haoren Niu, Qiaoyan Shang, Qiang Wang, Fangyou Yan, Jin-Jin Li","doi":"10.1021/acs.iecr.4c04761","DOIUrl":null,"url":null,"abstract":"The Flory–Huggins interaction parameter is an influential thermodynamic parameter for quantifying polymer–solvent interaction. The data-driven quantitative structure–property relationship (QSPR) model provides a rapid and accurate route to obtain the Flory–Huggins parameter of polymer–solvent mixtures. To evaluate the correlation between the polymer–solvent structure and the Flory–Huggins parameter, we developed a QSPR model based on 29 norm descriptors. To overcome the diversity of structural representations of a polymer, a ring repeating unit is adopted for unique structural representation of the polymers. Considering the effects of polymers, solvents, and polymer–solvent interactions on the Flory–Huggins parameters, the descriptors are divided into three parts. The results of statistical parameter analysis indicate that the QSPR model exhibits good prediction performance (<i>R</i><sup>2</sup><sub>test</sub> = 0.9348, AAE<sub>test</sub> = 0.1943) and robustness (<i>Q</i><sup>2</sup><sub>LOO-CV</sub> = 0.9177). This work offers a quantitative reference and a tool to understand polymer–solvent interactions.","PeriodicalId":39,"journal":{"name":"Industrial & Engineering Chemistry Research","volume":"58 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Industrial & Engineering Chemistry Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1021/acs.iecr.4c04761","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The Flory–Huggins interaction parameter is an influential thermodynamic parameter for quantifying polymer–solvent interaction. The data-driven quantitative structure–property relationship (QSPR) model provides a rapid and accurate route to obtain the Flory–Huggins parameter of polymer–solvent mixtures. To evaluate the correlation between the polymer–solvent structure and the Flory–Huggins parameter, we developed a QSPR model based on 29 norm descriptors. To overcome the diversity of structural representations of a polymer, a ring repeating unit is adopted for unique structural representation of the polymers. Considering the effects of polymers, solvents, and polymer–solvent interactions on the Flory–Huggins parameters, the descriptors are divided into three parts. The results of statistical parameter analysis indicate that the QSPR model exhibits good prediction performance (R2test = 0.9348, AAEtest = 0.1943) and robustness (Q2LOO-CV = 0.9177). This work offers a quantitative reference and a tool to understand polymer–solvent interactions.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
定量聚合物-溶剂相互作用的Flory-Huggins参数的数据驱动预测
Flory-Huggins相互作用参数是定量聚合物-溶剂相互作用的重要热力学参数。数据驱动的定量结构-性能关系(QSPR)模型为获得聚合物-溶剂混合物的Flory-Huggins参数提供了一条快速、准确的途径。为了评估聚合物-溶剂结构与Flory-Huggins参数之间的相关性,我们建立了一个基于29个范数描述符的QSPR模型。为了克服聚合物结构表征的多样性,采用环重复单元来表示聚合物的独特结构。考虑到聚合物、溶剂和聚合物-溶剂相互作用对Flory-Huggins参数的影响,描述符分为三个部分。统计参数分析结果表明,QSPR模型具有良好的预测性能(R2test = 0.9348, AAEtest = 0.1943)和稳健性(q2oo - cv = 0.9177)。这项工作为了解聚合物-溶剂相互作用提供了定量参考和工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Industrial & Engineering Chemistry Research
Industrial & Engineering Chemistry Research 工程技术-工程:化工
CiteScore
7.40
自引率
7.10%
发文量
1467
审稿时长
2.8 months
期刊介绍: ndustrial & Engineering Chemistry, with variations in title and format, has been published since 1909 by the American Chemical Society. Industrial & Engineering Chemistry Research is a weekly publication that reports industrial and academic research in the broad fields of applied chemistry and chemical engineering with special focus on fundamentals, processes, and products.
期刊最新文献
Issue Editorial Masthead Issue Publication Information Experimental and Machine Learning-Based Investigation of Hydrodynamics in Slurry Bubble Columns Numerical Simulation of Subcooled Flow Boiling in Water and NaCl Solution Using a Coalescence Breakup Nucleation Model Unraveling the Role of Pore Size in CO2 Separation through CANAL Polymer Membranes: A Molecular Dynamics Simulation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1