Establishing ion transport channels in plastic crystal electrolytes via multifunctional cross-linked polymer matrices for stable and safe lithium metal batteries

IF 17.1 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Nano Energy Pub Date : 2025-04-04 DOI:10.1016/j.nanoen.2025.110959
Jingze Chen , Anjun Hu , Kai Chen , Yuanjun Xia , Wang Xu , Kun Li , Borui Yang , Ting Li , Ruizhe Xu , Zhen Wang , Baihai Li , Fei Li , Jianping Long
{"title":"Establishing ion transport channels in plastic crystal electrolytes via multifunctional cross-linked polymer matrices for stable and safe lithium metal batteries","authors":"Jingze Chen ,&nbsp;Anjun Hu ,&nbsp;Kai Chen ,&nbsp;Yuanjun Xia ,&nbsp;Wang Xu ,&nbsp;Kun Li ,&nbsp;Borui Yang ,&nbsp;Ting Li ,&nbsp;Ruizhe Xu ,&nbsp;Zhen Wang ,&nbsp;Baihai Li ,&nbsp;Fei Li ,&nbsp;Jianping Long","doi":"10.1016/j.nanoen.2025.110959","DOIUrl":null,"url":null,"abstract":"<div><div>Despite the excellent ionic conductivity and thermal stability of succinonitrile (SN)-based plastic crystalline electrolytes (SPCEs), their reduction stability is suboptimal, causing undesirable interfacial side reactions. Incorporating a polymer matrix addresses these issues but limits polymer chain mobility, thereby reducing the actual ionic conductivity below expectations. To overcome these challenges, we propose a multifunctional in situ crosslinked polymer matrix (polymeric tris(2-acryloyloxyethyl) isocyanurate, PIATE) to modulating ion transport properties of SPCE. This modification enhances mutual solubility, suppresses SN crystallization, and establishes a rapid ion transport pathway (polymer···[SN···Li<sup>+</sup>]), significantly boosting ionic conductivity. PIATE-modified SPCE also features finely tuned energy levels and concentrated coordination structures, broadening the electrochemical window and forming stable Li<sub>3</sub>N-rich solid electrolyte interphases. Moreover, the isocyanuric acid groups in PIATE release non-flammable gases like nitrogen and water vapor upon thermal decomposition, enhancing fire safety. Consequently, the modified SPCE exhibits improved room temperature ionic conductivity (1.6 mS cm<sup>−1</sup>), high lithium-ion transference number (0.72), and extended electrochemical window (5.2 V). Electrochemical tests show enhanced stability in Li symmetric, Li||LiFePO<sub>4</sub>, and Li||LiCoO<sub>2</sub> cells (up to 4.6 V). The high thermal stability and safety have been further demonstrated in the Li||NCM811 pouch cells, highlighting its potential for practical applications in lithium metal batteries.</div></div>","PeriodicalId":394,"journal":{"name":"Nano Energy","volume":"139 ","pages":"Article 110959"},"PeriodicalIF":17.1000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Energy","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211285525003180","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Despite the excellent ionic conductivity and thermal stability of succinonitrile (SN)-based plastic crystalline electrolytes (SPCEs), their reduction stability is suboptimal, causing undesirable interfacial side reactions. Incorporating a polymer matrix addresses these issues but limits polymer chain mobility, thereby reducing the actual ionic conductivity below expectations. To overcome these challenges, we propose a multifunctional in situ crosslinked polymer matrix (polymeric tris(2-acryloyloxyethyl) isocyanurate, PIATE) to modulating ion transport properties of SPCE. This modification enhances mutual solubility, suppresses SN crystallization, and establishes a rapid ion transport pathway (polymer···[SN···Li+]), significantly boosting ionic conductivity. PIATE-modified SPCE also features finely tuned energy levels and concentrated coordination structures, broadening the electrochemical window and forming stable Li3N-rich solid electrolyte interphases. Moreover, the isocyanuric acid groups in PIATE release non-flammable gases like nitrogen and water vapor upon thermal decomposition, enhancing fire safety. Consequently, the modified SPCE exhibits improved room temperature ionic conductivity (1.6 mS cm−1), high lithium-ion transference number (0.72), and extended electrochemical window (5.2 V). Electrochemical tests show enhanced stability in Li symmetric, Li||LiFePO4, and Li||LiCoO2 cells (up to 4.6 V). The high thermal stability and safety have been further demonstrated in the Li||NCM811 pouch cells, highlighting its potential for practical applications in lithium metal batteries.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过多功能交联聚合物基质在塑料晶体电解质中建立离子传输通道,用于稳定和安全的锂金属电池
尽管基于琥珀腈(SN)的塑料结晶电解质(SPCE)具有出色的离子导电性和热稳定性,但其还原稳定性并不理想,会引起不良的界面副反应。加入聚合物基质可解决这些问题,但会限制聚合物链的流动性,从而使实际离子电导率低于预期。为了克服这些挑战,我们提出了一种多功能原位交联聚合物基质(聚合三(2-丙烯酰氧乙基)异氰尿酸酯,PIATE)来调节 SPCE 的离子传输特性。这种改性增强了互溶性,抑制了SN结晶,并建立了一条快速离子传输途径(聚合物---[SN---Li+]),从而显著提高了离子传导性。PIATE 改性的 SPCE 还具有精细调整的能级和集中配位结构,拓宽了电化学窗口,并形成了稳定的富含 Li3N 的固体电解质相间层。此外,PIATE 中的异氰尿酸基团在热分解时会释放氮气和水蒸气等不可燃气体,从而提高了防火安全性。因此,改性 SPCE 具有更好的室温离子电导率(1.6 mS cm-1)、更高的锂离子转移数(0.72)和更宽的电化学窗口(5.2 V)。电化学测试表明,这种材料在锂对称电池、锂||锂铁氧体电池和锂||锂钴氧化物电池中具有更高的稳定性(高达 4.6 V)。在 Li||NCM811 袋装电池中进一步证明了其高热稳定性和安全性,突出了其在锂金属电池中的实际应用潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nano Energy
Nano Energy CHEMISTRY, PHYSICAL-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
30.30
自引率
7.40%
发文量
1207
审稿时长
23 days
期刊介绍: Nano Energy is a multidisciplinary, rapid-publication forum of original peer-reviewed contributions on the science and engineering of nanomaterials and nanodevices used in all forms of energy harvesting, conversion, storage, utilization and policy. Through its mixture of articles, reviews, communications, research news, and information on key developments, Nano Energy provides a comprehensive coverage of this exciting and dynamic field which joins nanoscience and nanotechnology with energy science. The journal is relevant to all those who are interested in nanomaterials solutions to the energy problem. Nano Energy publishes original experimental and theoretical research on all aspects of energy-related research which utilizes nanomaterials and nanotechnology. Manuscripts of four types are considered: review articles which inform readers of the latest research and advances in energy science; rapid communications which feature exciting research breakthroughs in the field; full-length articles which report comprehensive research developments; and news and opinions which comment on topical issues or express views on the developments in related fields.
期刊最新文献
Enhancing the Stability of Lattice Oxygen and Thermotolerance in LiNi0.83Co0.12Mn0.05O2 Cathodes through Surface-to-Bulk Modulation for Superior Electrochemical Performance Molecular Engineering of Weak Intermolecular Interactions for Regulating Solvation and Interface in Cyclic Ether Electrolytes Enabling Robust Lithium Metal Batteries Low-power and non-volatile multi-level synaptic weight update characteristics in self-selecting Nb2O5/CeO2 memristor crossbar array for in-memory computing system Potassium-induced Trap State Passivation for High-Efficiency Antimony Selenide Solar Cells Interface-engineered mixed-dimensional GaS/GaN heterojunction for low-noise ultraviolet photodetector and imaging
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1