Optimization of delignification and mercerization processes for high-purity cellulose extraction from Semantan bamboo (Gigantochloa scortechinii) using Response Surface Modelling

Jameelah Alhadi Salih Othman , R.A. Ilyas , Abu Hassan Nordin , Norzita Ngadi , M.F.M. Alkbir , Victor Feizal Knight , Mohd Nor Faiz Norrrahim
{"title":"Optimization of delignification and mercerization processes for high-purity cellulose extraction from Semantan bamboo (Gigantochloa scortechinii) using Response Surface Modelling","authors":"Jameelah Alhadi Salih Othman ,&nbsp;R.A. Ilyas ,&nbsp;Abu Hassan Nordin ,&nbsp;Norzita Ngadi ,&nbsp;M.F.M. Alkbir ,&nbsp;Victor Feizal Knight ,&nbsp;Mohd Nor Faiz Norrrahim","doi":"10.1016/j.carpta.2025.100784","DOIUrl":null,"url":null,"abstract":"<div><div>Bamboo (<em>Gigantochloa scortechinii</em>) is increasingly recognized as an abundant, eco-friendly resource with immense potential in sustainable material development. Central to its utilization is the extraction of high-purity cellulose, a material prized for its exceptional strength, light weight, and biodegradability. This cellulose has broad applications in the production of nanocellulose, paper, adsorbents, textiles, and more. However, optimizing the delignification and mercerization processes for maximum cellulose yield and quality remains a challenge. This study aimed to optimize the delignification and mercerization processes to extract high-quality cellulose from bamboo fiber using Response Surface Methodology (RSM). The key parameters—sodium chlorite (NaClO₂) concentration (12–20 % w/w), temperature (60–80 °C), and reaction time (3–5 h)—were systematically varied to maximize cellulose yield and quality. The optimal conditions were found to be 16 % NaClO₂, 70 °C, and a 4-hour treatment, yielding 45.9 % cellulose. Structural analysis revealed an increase in crystallinity from 57.87 % in untreated fibers to 64.29 % in treated fibers, confirming the effectiveness of the optimized processes. These findings demonstrate the potential of Semantan bamboo for industrial applications, where high-purity cellulose is required.</div></div>","PeriodicalId":100213,"journal":{"name":"Carbohydrate Polymer Technologies and Applications","volume":"10 ","pages":"Article 100784"},"PeriodicalIF":6.5000,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbohydrate Polymer Technologies and Applications","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666893925001227","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Bamboo (Gigantochloa scortechinii) is increasingly recognized as an abundant, eco-friendly resource with immense potential in sustainable material development. Central to its utilization is the extraction of high-purity cellulose, a material prized for its exceptional strength, light weight, and biodegradability. This cellulose has broad applications in the production of nanocellulose, paper, adsorbents, textiles, and more. However, optimizing the delignification and mercerization processes for maximum cellulose yield and quality remains a challenge. This study aimed to optimize the delignification and mercerization processes to extract high-quality cellulose from bamboo fiber using Response Surface Methodology (RSM). The key parameters—sodium chlorite (NaClO₂) concentration (12–20 % w/w), temperature (60–80 °C), and reaction time (3–5 h)—were systematically varied to maximize cellulose yield and quality. The optimal conditions were found to be 16 % NaClO₂, 70 °C, and a 4-hour treatment, yielding 45.9 % cellulose. Structural analysis revealed an increase in crystallinity from 57.87 % in untreated fibers to 64.29 % in treated fibers, confirming the effectiveness of the optimized processes. These findings demonstrate the potential of Semantan bamboo for industrial applications, where high-purity cellulose is required.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于响应面模型的高纯竹材纤维素脱木质素和丝光工艺优化
竹子(Gigantochloa scortechinii)越来越被认为是一种丰富的生态友好型资源,在可持续材料开发方面具有巨大潜力。其利用的核心是提取高纯度纤维素,这种材料因其超强、轻质和生物可降解性而备受推崇。这种纤维素可广泛应用于纳米纤维素、纸张、吸附剂、纺织品等的生产。然而,如何优化脱木质素和丝光处理过程以获得最高的纤维素产量和质量仍然是一项挑战。本研究旨在利用响应面法(RSM)优化脱木素和丝光工艺,以从竹纤维中提取高质量的纤维素。研究系统地改变了关键参数--亚氯酸钠(NaClO₂)浓度(12-20 % w/w)、温度(60-80 °C)和反应时间(3-5 h),以最大限度地提高纤维素的产量和质量。结果发现,最佳条件为 16%NaClO₂、70 °C、4 小时处理,纤维素产量为 45.9%。结构分析表明,结晶度从未加工纤维的 57.87% 提高到加工纤维的 64.29%,证实了优化工艺的有效性。这些研究结果证明了思曼坦竹在需要高纯度纤维素的工业应用领域的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
8.70
自引率
0.00%
发文量
0
期刊最新文献
Valorizing date waste into functional bacterial nanocellulose with dual adsorption–antifouling properties for wastewater remediation Guar gum/Kappa carrageenan-based hydrogel reinforced with surface altered, curcumin@ZIF-8: Assessing its ability to accelerate wound closure Fabricating a chitosan-based human placenta extract–encapsulated elastic zonal-structured scaffold for osteochondral applications Active edible coatings for smart food preservation and sustainability: A review Sulfated modification and biomedical applications of β-glucans: A review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1