Optimized diamond NV sensor for simultaneous sensing of magnetic field and temperature

IF 4.9 3区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Sensors and Actuators A-physical Pub Date : 2025-04-02 DOI:10.1016/j.sna.2025.116543
Shiyu Ge , Sihan An , Haoyu Li , Na Li , Guobin Chen , Wentao Lu , Zhiqiang Zhang , Yang Wang , Chengkun Wang , Xun Yang , Guanxiang Du
{"title":"Optimized diamond NV sensor for simultaneous sensing of magnetic field and temperature","authors":"Shiyu Ge ,&nbsp;Sihan An ,&nbsp;Haoyu Li ,&nbsp;Na Li ,&nbsp;Guobin Chen ,&nbsp;Wentao Lu ,&nbsp;Zhiqiang Zhang ,&nbsp;Yang Wang ,&nbsp;Chengkun Wang ,&nbsp;Xun Yang ,&nbsp;Guanxiang Du","doi":"10.1016/j.sna.2025.116543","DOIUrl":null,"url":null,"abstract":"<div><div>Nitrogen-vacancy (NV) defects in diamond serve as versatile multi-physical field sensors capable of measuring magnetic fields, temperature, and pressure. In this work, we demonstrate a method for measuring magnetic field and temperature variations by directly solving the Hamiltonian of an NV ensemble. This approach enables fast, dynamic, and decoupled measurements using a simple experimental setup. Using differential methods combined with optimized gating windows and laser power, we reduce the uncertainty of fitting of single peak to 0.02 MHz. As a result, nonlinear errors in magnetic field and temperature measurements are achieved at 0.229 % and 1.68 %, respectively. In this way, our method achieves a dynamic magnetic field measurement range of 50 mT and a refresh rate exceeding 5 Hz with commendable sensitivity. Real-time decoupled measurement of magnetic field and temperature is thereby achieved. This work paves the way for extending the application of NV diamond sensors to more demanding conditions.</div></div>","PeriodicalId":21689,"journal":{"name":"Sensors and Actuators A-physical","volume":"389 ","pages":"Article 116543"},"PeriodicalIF":4.9000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors and Actuators A-physical","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0924424725003498","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Nitrogen-vacancy (NV) defects in diamond serve as versatile multi-physical field sensors capable of measuring magnetic fields, temperature, and pressure. In this work, we demonstrate a method for measuring magnetic field and temperature variations by directly solving the Hamiltonian of an NV ensemble. This approach enables fast, dynamic, and decoupled measurements using a simple experimental setup. Using differential methods combined with optimized gating windows and laser power, we reduce the uncertainty of fitting of single peak to 0.02 MHz. As a result, nonlinear errors in magnetic field and temperature measurements are achieved at 0.229 % and 1.68 %, respectively. In this way, our method achieves a dynamic magnetic field measurement range of 50 mT and a refresh rate exceeding 5 Hz with commendable sensitivity. Real-time decoupled measurement of magnetic field and temperature is thereby achieved. This work paves the way for extending the application of NV diamond sensors to more demanding conditions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
优化金刚石NV传感器同时感应磁场和温度
金刚石中的氮空位(NV)缺陷是一种多功能的多物理场传感器,能够测量磁场、温度和压力。在这项工作中,我们展示了一种通过直接求解NV系综的哈密顿量来测量磁场和温度变化的方法。该方法使用简单的实验设置实现快速,动态和解耦的测量。采用差分方法结合优化的门控窗口和激光功率,将单峰拟合的不确定度降低到0.02 MHz。结果表明,磁场和温度测量的非线性误差分别为0.229 %和1.68 %。通过这种方式,我们的方法实现了50 mT的动态磁场测量范围和超过5 Hz的刷新率,并且具有良好的灵敏度。从而实现了磁场和温度的实时解耦测量。这项工作为将NV金刚石传感器的应用扩展到更苛刻的条件铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Sensors and Actuators A-physical
Sensors and Actuators A-physical 工程技术-工程:电子与电气
CiteScore
8.10
自引率
6.50%
发文量
630
审稿时长
49 days
期刊介绍: Sensors and Actuators A: Physical brings together multidisciplinary interests in one journal entirely devoted to disseminating information on all aspects of research and development of solid-state devices for transducing physical signals. Sensors and Actuators A: Physical regularly publishes original papers, letters to the Editors and from time to time invited review articles within the following device areas: • Fundamentals and Physics, such as: classification of effects, physical effects, measurement theory, modelling of sensors, measurement standards, measurement errors, units and constants, time and frequency measurement. Modeling papers should bring new modeling techniques to the field and be supported by experimental results. • Materials and their Processing, such as: piezoelectric materials, polymers, metal oxides, III-V and II-VI semiconductors, thick and thin films, optical glass fibres, amorphous, polycrystalline and monocrystalline silicon. • Optoelectronic sensors, such as: photovoltaic diodes, photoconductors, photodiodes, phototransistors, positron-sensitive photodetectors, optoisolators, photodiode arrays, charge-coupled devices, light-emitting diodes, injection lasers and liquid-crystal displays. • Mechanical sensors, such as: metallic, thin-film and semiconductor strain gauges, diffused silicon pressure sensors, silicon accelerometers, solid-state displacement transducers, piezo junction devices, piezoelectric field-effect transducers (PiFETs), tunnel-diode strain sensors, surface acoustic wave devices, silicon micromechanical switches, solid-state flow meters and electronic flow controllers. Etc...
期刊最新文献
Synergistic effect of silver nanoparticles and carbon nanotubes in flexible composite films for boosted photothermoelectric properties An inverse-magnetostrictive force sensor with optimized bias magnetic field configuration and signal conditioning Phased array ultrasound transducer based on high-performance Mn-doped BS-PT ceramics for low-intensity focused ultrasound applications Magnetic helical micro/nanomachines: Recent advances in functionalization, driving control, and biomedical applications Low-noise AC current measurement with a single-element magnetoresistive sensor and lock-in amplification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1