Yongsheng Yu , Weibo Zheng , Bing Li , Cunman Zhang , Pingwen Ming
{"title":"A comprehensive review of cold start in proton-exchange membrane fuel cells: Challenges, strategies, and prospects","authors":"Yongsheng Yu , Weibo Zheng , Bing Li , Cunman Zhang , Pingwen Ming","doi":"10.1016/j.apenergy.2025.125846","DOIUrl":null,"url":null,"abstract":"<div><div>Hydrogen energy, a clean and efficient power source, plays a crucial role in the global transition to sustainable energy. Among various hydrogen energy technologies, proton-exchange membrane fuel cells (PEMFCs) are highly promising owing to their high-power density and low-temperature operation. However, the cold-start performance of PEMFCs under subfreezing conditions remains a significant challenge. Ice formation obstructs transport pathways, disrupts electrochemical reactions, and hinders both thermal and water management. This review provides a comprehensive analysis of recent advancements in PEMFC cold-start research, particularly on material innovations, structural design optimizations, and multi-mode cold-start control strategies. Unlike previous reviews that focus on numerical modeling, experimental analysis, thermal management, or optimization strategies, this paper integrates key mechanisms influencing cold-start performance. These mechanisms include water content regulation, heat transfer enhancement, and ice mitigation techniques. Moreover, various cold-start strategies (including purge-assisted water removal, external load regulation, and hybrid heating) are compared to assess their effectiveness and feasibility in real-world applications. Additionally, the review highlights key challenges affecting cold-start efficiency and outlines future research directions. These include the development of self-regulating hydration membranes, advanced water transport structures, and adaptive multi-phase startup strategies. This paper integrates fundamental principles with practical engineering approaches to outline a roadmap for enhancing PEMFC cold-start technology, particularly for automotive and stationary power applications.</div></div>","PeriodicalId":246,"journal":{"name":"Applied Energy","volume":"390 ","pages":""},"PeriodicalIF":11.0000,"publicationDate":"2025-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306261925005768","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Hydrogen energy, a clean and efficient power source, plays a crucial role in the global transition to sustainable energy. Among various hydrogen energy technologies, proton-exchange membrane fuel cells (PEMFCs) are highly promising owing to their high-power density and low-temperature operation. However, the cold-start performance of PEMFCs under subfreezing conditions remains a significant challenge. Ice formation obstructs transport pathways, disrupts electrochemical reactions, and hinders both thermal and water management. This review provides a comprehensive analysis of recent advancements in PEMFC cold-start research, particularly on material innovations, structural design optimizations, and multi-mode cold-start control strategies. Unlike previous reviews that focus on numerical modeling, experimental analysis, thermal management, or optimization strategies, this paper integrates key mechanisms influencing cold-start performance. These mechanisms include water content regulation, heat transfer enhancement, and ice mitigation techniques. Moreover, various cold-start strategies (including purge-assisted water removal, external load regulation, and hybrid heating) are compared to assess their effectiveness and feasibility in real-world applications. Additionally, the review highlights key challenges affecting cold-start efficiency and outlines future research directions. These include the development of self-regulating hydration membranes, advanced water transport structures, and adaptive multi-phase startup strategies. This paper integrates fundamental principles with practical engineering approaches to outline a roadmap for enhancing PEMFC cold-start technology, particularly for automotive and stationary power applications.
期刊介绍:
Applied Energy serves as a platform for sharing innovations, research, development, and demonstrations in energy conversion, conservation, and sustainable energy systems. The journal covers topics such as optimal energy resource use, environmental pollutant mitigation, and energy process analysis. It welcomes original papers, review articles, technical notes, and letters to the editor. Authors are encouraged to submit manuscripts that bridge the gap between research, development, and implementation. The journal addresses a wide spectrum of topics, including fossil and renewable energy technologies, energy economics, and environmental impacts. Applied Energy also explores modeling and forecasting, conservation strategies, and the social and economic implications of energy policies, including climate change mitigation. It is complemented by the open-access journal Advances in Applied Energy.