Linjie Li , Yanli Tang , Hao Dong , Linlin Zhao , Changdong Liu
{"title":"Planning conservation priority areas for marine mammals accounting for human impact, climate change and multidimensionality of biodiversity","authors":"Linjie Li , Yanli Tang , Hao Dong , Linlin Zhao , Changdong Liu","doi":"10.1016/j.jenvman.2025.125193","DOIUrl":null,"url":null,"abstract":"<div><div>Because of the crucial ecological status of marine mammals, identifying priority areas for these species could significantly contribute to achieving the 30 % ocean protection target set by the Kunming-Montreal Global Biodiversity Framework. However, comprehensive conservation priorities requires considering multiple biodiversity dimensions and the impacts of climate change and human activities, which are poorly considered. In this study, we first investigated the distribution patterns of species, functional, and phylogenetic diversity of marine mammals and analyzed their relationship with cumulative anthropogenic impacts and climate change. We then developed conservation plans in which conservation targets of each species were allocated according to their distinctiveness indices, and protection costs were set as cumulative anthropogenic impacts and future climate velocity. The results indicate that incorporating extinction probability into the calculation of distinctiveness indices affects species uniqueness rankings, highlighting the need to consider species threat levels in future conservation efforts. Negative correlations were found for marine mammal diversity with cumulative anthropogenic impacts and climate change, implying that these factors may have already influenced the biodiversity distribution. The results suggest that existing MPAs are exposed to high levels of cumulative human impacts and climate velocity, necessitating further assessment of their effectiveness. In contrast, the low-regret MPAs identified in this study face significantly lower cumulative human impacts and future climate velocity, presenting valuable opportunities for marine mammal conservation.</div></div>","PeriodicalId":356,"journal":{"name":"Journal of Environmental Management","volume":"381 ","pages":"Article 125193"},"PeriodicalIF":8.4000,"publicationDate":"2025-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental Management","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0301479725011697","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Because of the crucial ecological status of marine mammals, identifying priority areas for these species could significantly contribute to achieving the 30 % ocean protection target set by the Kunming-Montreal Global Biodiversity Framework. However, comprehensive conservation priorities requires considering multiple biodiversity dimensions and the impacts of climate change and human activities, which are poorly considered. In this study, we first investigated the distribution patterns of species, functional, and phylogenetic diversity of marine mammals and analyzed their relationship with cumulative anthropogenic impacts and climate change. We then developed conservation plans in which conservation targets of each species were allocated according to their distinctiveness indices, and protection costs were set as cumulative anthropogenic impacts and future climate velocity. The results indicate that incorporating extinction probability into the calculation of distinctiveness indices affects species uniqueness rankings, highlighting the need to consider species threat levels in future conservation efforts. Negative correlations were found for marine mammal diversity with cumulative anthropogenic impacts and climate change, implying that these factors may have already influenced the biodiversity distribution. The results suggest that existing MPAs are exposed to high levels of cumulative human impacts and climate velocity, necessitating further assessment of their effectiveness. In contrast, the low-regret MPAs identified in this study face significantly lower cumulative human impacts and future climate velocity, presenting valuable opportunities for marine mammal conservation.
期刊介绍:
The Journal of Environmental Management is a journal for the publication of peer reviewed, original research for all aspects of management and the managed use of the environment, both natural and man-made.Critical review articles are also welcome; submission of these is strongly encouraged.