Optimizing multi-source ultrasound configuration for process intensification: numerical simulation and experimental validation

IF 3.9 3区 工程技术 Q3 ENERGY & FUELS Chemical Engineering and Processing - Process Intensification Pub Date : 2025-03-29 DOI:10.1016/j.cep.2025.110294
Zeying Wang , Guo Lin , Tu Hu , Shixing Wang , Shiwei Li , Zhen Zhong , Likang Fu , Hongying Xia , Libo Zhang
{"title":"Optimizing multi-source ultrasound configuration for process intensification: numerical simulation and experimental validation","authors":"Zeying Wang ,&nbsp;Guo Lin ,&nbsp;Tu Hu ,&nbsp;Shixing Wang ,&nbsp;Shiwei Li ,&nbsp;Zhen Zhong ,&nbsp;Likang Fu ,&nbsp;Hongying Xia ,&nbsp;Libo Zhang","doi":"10.1016/j.cep.2025.110294","DOIUrl":null,"url":null,"abstract":"<div><div>This paper investigates the application of ultrasonic simulation in metallurgy, focusing on the effects of ultrasonic power density, number of transducers, and multi-source array mode on the acoustic field distribution characteristics. The simulation results reveal that as power density increases from 375 W/L to 750 W/L at 28 kHz, the maximum sound pressure rises from 4.13 × 10<sup>6</sup> Pa to 4.37 × 10<sup>6</sup> Pa, and the cavitation volume fraction increases from 19% to 50%. The maximum sound pressure (4.13 × 10<sup>6</sup> Pa) and cavitation volume fraction (49%) of two transducers are higher than three transducers. The isosceles triangle array method exhibits the optimal sound field characteristics, with a maximum sound pressure of 2.87 × 10<sup>6</sup> Pa and a cavitation volume fraction of 52%. The maximum sound pressure of 4.13 × 10<sup>6</sup> Pa is achieved when two transducers are 45 mm from the reaction chamber bottom and the peak offset distance is zero. The simulation results are confirmed by measuring the sound pressure in water using a hydrophone under 140–200 W. This research visualizes the ultrasonic process intensification parameters, addressing the issue of random arrangement of transducer in industrial applications and enhancing work efficiency.</div></div>","PeriodicalId":9929,"journal":{"name":"Chemical Engineering and Processing - Process Intensification","volume":"213 ","pages":"Article 110294"},"PeriodicalIF":3.9000,"publicationDate":"2025-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering and Processing - Process Intensification","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0255270125001436","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper investigates the application of ultrasonic simulation in metallurgy, focusing on the effects of ultrasonic power density, number of transducers, and multi-source array mode on the acoustic field distribution characteristics. The simulation results reveal that as power density increases from 375 W/L to 750 W/L at 28 kHz, the maximum sound pressure rises from 4.13 × 106 Pa to 4.37 × 106 Pa, and the cavitation volume fraction increases from 19% to 50%. The maximum sound pressure (4.13 × 106 Pa) and cavitation volume fraction (49%) of two transducers are higher than three transducers. The isosceles triangle array method exhibits the optimal sound field characteristics, with a maximum sound pressure of 2.87 × 106 Pa and a cavitation volume fraction of 52%. The maximum sound pressure of 4.13 × 106 Pa is achieved when two transducers are 45 mm from the reaction chamber bottom and the peak offset distance is zero. The simulation results are confirmed by measuring the sound pressure in water using a hydrophone under 140–200 W. This research visualizes the ultrasonic process intensification parameters, addressing the issue of random arrangement of transducer in industrial applications and enhancing work efficiency.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
优化多源超声配置过程强化:数值模拟和实验验证
本文研究了超声模拟在冶金中的应用,重点研究了超声功率密度、换能器数量和多源阵列方式对声场分布特性的影响。仿真结果表明,当功率密度从375 W/L增加到750w /L时,最大声压从4.13 × 106 Pa增加到4.37 × 106 Pa,空化体积分数从19%增加到50%。两个换能器的最大声压(4.13 × 106 Pa)和空化体积分数(49%)均高于三个换能器。等腰三角形阵列法声场特性最佳,最大声压为2.87 × 106 Pa,空化体积分数为52%。当两个换能器距离反应室底部45 mm,峰值偏移距离为零时,最大声压为4.13 × 106 Pa。利用140 ~ 200w的水听器测量水中声压,验证了仿真结果。本研究将超声过程强化参数可视化,解决了工业应用中换能器随机布置的问题,提高了工作效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.80
自引率
9.30%
发文量
408
审稿时长
49 days
期刊介绍: Chemical Engineering and Processing: Process Intensification is intended for practicing researchers in industry and academia, working in the field of Process Engineering and related to the subject of Process Intensification.Articles published in the Journal demonstrate how novel discoveries, developments and theories in the field of Process Engineering and in particular Process Intensification may be used for analysis and design of innovative equipment and processing methods with substantially improved sustainability, efficiency and environmental performance.
期刊最新文献
Rate-based modeling and optimization of a Butyl-lactate production process by reactive distillation Process intensification for e-waste valorization: Economic & energy advantages over conventional recovery routes Machine learning assisted optimization of an industrial visbreaker plant Rapid method for the prediction of basic performance data of a packed bed with a structured packing using a simple CFD simulation Ultrasonic-enhanced complete lithium extraction from alkaline roasting slag of spodumene: kinetics and mechanism
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1