Somatic embryogenetic receptor kinase TaSERL2 regulates heat stress tolerance in wheat by influencing TaBZR2 protein stability and transcriptional activity

IF 10.5 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Plant Biotechnology Journal Pub Date : 2025-04-04 DOI:10.1111/pbi.70045
Xiang-Yang Hao, Tai-Fei Yu, Chao-Jun Peng, Yi-Han Fu, Yu-Hui Fang, Yan Li, Zhao-Shi Xu, Jun Chen, Hai-Bin Dong, You-Zhi Ma, Wei-Gang Xu
{"title":"Somatic embryogenetic receptor kinase TaSERL2 regulates heat stress tolerance in wheat by influencing TaBZR2 protein stability and transcriptional activity","authors":"Xiang-Yang Hao,&nbsp;Tai-Fei Yu,&nbsp;Chao-Jun Peng,&nbsp;Yi-Han Fu,&nbsp;Yu-Hui Fang,&nbsp;Yan Li,&nbsp;Zhao-Shi Xu,&nbsp;Jun Chen,&nbsp;Hai-Bin Dong,&nbsp;You-Zhi Ma,&nbsp;Wei-Gang Xu","doi":"10.1111/pbi.70045","DOIUrl":null,"url":null,"abstract":"<p>Heat stress is a major factor limiting crop yield, a challenge intensified by climate change. Initial findings indicate that BES1/BZR1 may use heat shock to regulate plant thermal adaptability independently of BIN2-mediated brassinosteroid signalling, although the exact molecular mechanism remains unclear. In this study, we identified <i>TaBZR2</i>, a wheat gene whose expression showed a strong positive correlation with heat stress tolerance, based on transcriptome analysis of heat-tolerant wheat cultivars. Overexpression of <i>TaBZR2</i> enhanced heat stress tolerance, while RNA interference of <i>TaBZR2</i> reduced it. Further analysis revealed that TaBZR2 interacts with and is phosphorylated by wheat somatic embryogenesis receptor-like kinase 2 (TaSERL2). Overexpression of <i>TaSERL2</i> reduced heat stress tolerance by promoting TaBZR2 degradation and inhibiting its regulation of wheat heat stress response genes. However, heat stress reduced the phosphorylation levels of both <i>TaSERL2</i> and <i>TaBZR2</i>, lessening <i>TaSERL2</i>'s inhibitory effect on <i>TaBZR2</i> and enhancing the stability of TaBZR2. These results reveal that the TaSERL2-TaBZR2 module negatively regulates plant heat stress tolerance. This study expands the current model of heat stress responses and provides evidence for the role of BES1/BZR1 in heat stress regulation independent of brassinosteroid signalling.</p>","PeriodicalId":221,"journal":{"name":"Plant Biotechnology Journal","volume":"23 7","pages":"2537-2553"},"PeriodicalIF":10.5000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/pbi.70045","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Biotechnology Journal","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/pbi.70045","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Heat stress is a major factor limiting crop yield, a challenge intensified by climate change. Initial findings indicate that BES1/BZR1 may use heat shock to regulate plant thermal adaptability independently of BIN2-mediated brassinosteroid signalling, although the exact molecular mechanism remains unclear. In this study, we identified TaBZR2, a wheat gene whose expression showed a strong positive correlation with heat stress tolerance, based on transcriptome analysis of heat-tolerant wheat cultivars. Overexpression of TaBZR2 enhanced heat stress tolerance, while RNA interference of TaBZR2 reduced it. Further analysis revealed that TaBZR2 interacts with and is phosphorylated by wheat somatic embryogenesis receptor-like kinase 2 (TaSERL2). Overexpression of TaSERL2 reduced heat stress tolerance by promoting TaBZR2 degradation and inhibiting its regulation of wheat heat stress response genes. However, heat stress reduced the phosphorylation levels of both TaSERL2 and TaBZR2, lessening TaSERL2's inhibitory effect on TaBZR2 and enhancing the stability of TaBZR2. These results reveal that the TaSERL2-TaBZR2 module negatively regulates plant heat stress tolerance. This study expands the current model of heat stress responses and provides evidence for the role of BES1/BZR1 in heat stress regulation independent of brassinosteroid signalling.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
体胚发生受体激酶TaSERL2通过影响TaBZR2蛋白的稳定性和转录活性调控小麦耐热性。
热应激是限制作物产量的一个主要因素,气候变化加剧了这一挑战。初步研究结果表明,BES1/BZR1可能通过热休克独立于bin2介导的油菜素内酯信号传导调节植物热适应性,但确切的分子机制尚不清楚。本研究通过对耐高温小麦品种的转录组分析,鉴定出一个与耐热性呈显著正相关的小麦基因TaBZR2。TaBZR2过表达增强了耐热性,而RNA干扰则降低了耐热性。进一步分析发现,TaBZR2与小麦体细胞胚胎发生受体样激酶2 (TaSERL2)相互作用并被其磷酸化。TaSERL2过表达通过促进TaBZR2降解和抑制TaBZR2对小麦热胁迫应答基因的调控,降低了小麦的耐热性。然而,热应激降低了TaSERL2和TaBZR2的磷酸化水平,减弱了TaSERL2对TaBZR2的抑制作用,增强了TaBZR2的稳定性。这些结果表明,TaSERL2-TaBZR2模块负调控植物的耐热性。本研究扩展了热应激反应的现有模型,并为BES1/BZR1在独立于油菜素内酯信号传导的热应激调节中的作用提供了证据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Plant Biotechnology Journal
Plant Biotechnology Journal 生物-生物工程与应用微生物
CiteScore
20.50
自引率
2.90%
发文量
201
审稿时长
1 months
期刊介绍: Plant Biotechnology Journal aspires to publish original research and insightful reviews of high impact, authored by prominent researchers in applied plant science. The journal places a special emphasis on molecular plant sciences and their practical applications through plant biotechnology. Our goal is to establish a platform for showcasing significant advances in the field, encompassing curiosity-driven studies with potential applications, strategic research in plant biotechnology, scientific analysis of crucial issues for the beneficial utilization of plant sciences, and assessments of the performance of plant biotechnology products in practical applications.
期刊最新文献
The Wheat CRK-RLCK-MAPKs Signalling Module Confers High-Temperature All-Stage Resistance to Stripe Rust. The Nicotiana benthamiana Biofactory Transcription Profiling of Potato Leaves in Response to Heat Stress at Single-Cell Resolution. Ralstonia solanacearum Acetyltransferase RipU Hijacks SlJAR1 to Inhibit Jasmonic Acid Signalling and Facilitate Pathogen Infection. Machine Learning-Driven Construction of High-Yielding Cucumber Plant Architectures in Greenhouse Environments.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1