Scaling a foundational protein language model to 100 billion parameters

IF 32.1 1区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS Nature Methods Pub Date : 2025-04-03 DOI:10.1038/s41592-025-02637-y
{"title":"Scaling a foundational protein language model to 100 billion parameters","authors":"","doi":"10.1038/s41592-025-02637-y","DOIUrl":null,"url":null,"abstract":"xTrimoPGLM, a protein language model scaled to 100 billion parameters, showcased scaling behavior to excel in various protein-related tasks. This development advances protein understanding and design, and contributes to the evolving landscape of comprehensive models designed to serve as a base for various specialized tasks (foundation models) in protein science.","PeriodicalId":18981,"journal":{"name":"Nature Methods","volume":"22 5","pages":"908-909"},"PeriodicalIF":32.1000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Methods","FirstCategoryId":"99","ListUrlMain":"https://www.nature.com/articles/s41592-025-02637-y","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

xTrimoPGLM, a protein language model scaled to 100 billion parameters, showcased scaling behavior to excel in various protein-related tasks. This development advances protein understanding and design, and contributes to the evolving landscape of comprehensive models designed to serve as a base for various specialized tasks (foundation models) in protein science.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
将基础蛋白质语言模型扩展到1000亿个参数。
xTrimoPGLM是一种缩放到1000亿个参数的蛋白质语言模型,它展示了在各种蛋白质相关任务中表现出色的缩放行为。这一发展促进了蛋白质的理解和设计,并为蛋白质科学中各种专门任务(基础模型)的基础提供了综合模型的发展前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nature Methods
Nature Methods 生物-生化研究方法
CiteScore
58.70
自引率
1.70%
发文量
326
审稿时长
1 months
期刊介绍: Nature Methods is a monthly journal that focuses on publishing innovative methods and substantial enhancements to fundamental life sciences research techniques. Geared towards a diverse, interdisciplinary readership of researchers in academia and industry engaged in laboratory work, the journal offers new tools for research and emphasizes the immediate practical significance of the featured work. It publishes primary research papers and reviews recent technical and methodological advancements, with a particular interest in primary methods papers relevant to the biological and biomedical sciences. This includes methods rooted in chemistry with practical applications for studying biological problems.
期刊最新文献
Cell context-dependent in silico organelle localization in label-free microscopy images. Methods to analyze cell migration data: fundamentals and practical guidelines. SpaceBar enables single-cell-resolution clone tracing with imaging-based spatial transcriptomics. Selecting the optimal cell migration assay: fundamentals and practical guidelines. Targeted RNA-binding protein degradation to improve mRNA live imaging in animal cells.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1