Ethical-Lens: Curbing malicious usages of open-source text-to-image models.

IF 7.4 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Patterns Pub Date : 2025-03-03 eCollection Date: 2025-03-14 DOI:10.1016/j.patter.2025.101187
Yuzhu Cai, Sheng Yin, Yuxi Wei, Chenxin Xu, Weibo Mao, Felix Juefei-Xu, Siheng Chen, Yanfeng Wang
{"title":"Ethical-Lens: Curbing malicious usages of open-source text-to-image models.","authors":"Yuzhu Cai, Sheng Yin, Yuxi Wei, Chenxin Xu, Weibo Mao, Felix Juefei-Xu, Siheng Chen, Yanfeng Wang","doi":"10.1016/j.patter.2025.101187","DOIUrl":null,"url":null,"abstract":"<p><p>The burgeoning landscape of text-to-image models, exemplified by innovations such as Midjourney and DALL·E 3, has revolutionized content creation across diverse sectors. However, these advances bring forth critical ethical concerns, particularly with the misuse of open-source models to generate content that violates societal norms. Addressing this, we introduce Ethical-Lens, a framework designed to facilitate the value-aligned usage of text-to-image tools without necessitating internal model revision. Ethical-Lens ensures value alignment in text-to-image models across toxicity and bias dimensions by refining user commands and rectifying model outputs. Systematic evaluation metrics, combining GPT4-V, HEIM, and FairFace scores, assess alignment capability. Our experiments reveal that Ethical-Lens enhances alignment capabilities to levels comparable with or superior to commercial models such as DALL <math><mrow><mo>·</mo></mrow> </math> E 3, while preserving the quality of generated images. This study indicates the potential of Ethical-Lens to promote the sustainable development of open-source text-to-image tools and their beneficial integration into society.</p>","PeriodicalId":36242,"journal":{"name":"Patterns","volume":"6 3","pages":"101187"},"PeriodicalIF":7.4000,"publicationDate":"2025-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11963081/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Patterns","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.patter.2025.101187","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/14 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

The burgeoning landscape of text-to-image models, exemplified by innovations such as Midjourney and DALL·E 3, has revolutionized content creation across diverse sectors. However, these advances bring forth critical ethical concerns, particularly with the misuse of open-source models to generate content that violates societal norms. Addressing this, we introduce Ethical-Lens, a framework designed to facilitate the value-aligned usage of text-to-image tools without necessitating internal model revision. Ethical-Lens ensures value alignment in text-to-image models across toxicity and bias dimensions by refining user commands and rectifying model outputs. Systematic evaluation metrics, combining GPT4-V, HEIM, and FairFace scores, assess alignment capability. Our experiments reveal that Ethical-Lens enhances alignment capabilities to levels comparable with or superior to commercial models such as DALL · E 3, while preserving the quality of generated images. This study indicates the potential of Ethical-Lens to promote the sustainable development of open-source text-to-image tools and their beneficial integration into society.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
伦理镜头:遏制开源文本到图像模型的恶意使用。
以Midjourney和DALL·e3等创新为代表的文本到图像模式的蓬勃发展,已经彻底改变了各个领域的内容创作。然而,这些进步带来了关键的伦理问题,特别是滥用开源模型来生成违反社会规范的内容。为了解决这个问题,我们介绍了Ethical-Lens,这是一个框架,旨在促进文本到图像工具的价值一致的使用,而无需内部模型修改。Ethical-Lens通过精炼用户命令和校正模型输出,确保文本到图像模型在毒性和偏差维度上的值对齐。系统的评估指标,结合GPT4-V, HEIM和FairFace评分,评估对齐能力。我们的实验表明,Ethical-Lens将对齐能力提高到与DALL·e3等商业模型相当或更好的水平,同时保持生成图像的质量。本研究表明Ethical-Lens在促进开源文本到图像工具的可持续发展及其与社会的有益融合方面具有潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Patterns
Patterns Decision Sciences-Decision Sciences (all)
CiteScore
10.60
自引率
4.60%
发文量
153
审稿时长
19 weeks
期刊介绍:
期刊最新文献
Sleep staging through an unsupervised learning lens. The inadequacy of offline large language model evaluations: A need to account for personalization in model behavior. Spatial coherence in DNA barcode networks. Dignity, properly used, could be a useful construct in AI ethics. Is AI overhyped?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1