SpaGRN: Investigating spatially informed regulatory paths for spatially resolved transcriptomics data.

IF 7.7 Cell systems Pub Date : 2025-04-16 Epub Date: 2025-04-02 DOI:10.1016/j.cels.2025.101243
Yao Li, Xiaobin Liu, Lidong Guo, Kai Han, Shuangsang Fang, Xinjiang Wan, Dantong Wang, Xun Xu, Ling Jiang, Guangyi Fan, Mengyang Xu
{"title":"SpaGRN: Investigating spatially informed regulatory paths for spatially resolved transcriptomics data.","authors":"Yao Li, Xiaobin Liu, Lidong Guo, Kai Han, Shuangsang Fang, Xinjiang Wan, Dantong Wang, Xun Xu, Ling Jiang, Guangyi Fan, Mengyang Xu","doi":"10.1016/j.cels.2025.101243","DOIUrl":null,"url":null,"abstract":"<p><p>Cells spatially organize into distinct cell types or functional domains through localized gene regulatory networks. However, current spatially resolved transcriptomics analyses fail to integrate spatial constraints and proximal cell influences, limiting the mechanistic understanding of tissue organization. Here, we introduce SpaGRN, a statistical framework that reconstructs cell-type- or functional-domain-specific, dynamic, and spatial regulons by coupling intracellular spatial regulatory causality with extracellular signaling path information. Benchmarking across synthetic and real datasets demonstrates SpaGRN's superior precision over state-of-the-art tools in identifying context-dependent regulons. Applied to diverse spatially resolved transcriptomics platforms (Stereo-seq, STARmap, MERFISH, CosMx, Slide-seq, and 10x Visium), complex cancerous samples, and 3D datasets of developing Drosophila embryos and larvae, SpaGRN not only provides a versatile toolkit for decoding receptor-mediated spatial regulons but also reveals spatiotemporal regulatory mechanisms underlying organogenesis and inflammation.</p>","PeriodicalId":93929,"journal":{"name":"Cell systems","volume":" ","pages":"101243"},"PeriodicalIF":7.7000,"publicationDate":"2025-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.cels.2025.101243","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/4/2 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Cells spatially organize into distinct cell types or functional domains through localized gene regulatory networks. However, current spatially resolved transcriptomics analyses fail to integrate spatial constraints and proximal cell influences, limiting the mechanistic understanding of tissue organization. Here, we introduce SpaGRN, a statistical framework that reconstructs cell-type- or functional-domain-specific, dynamic, and spatial regulons by coupling intracellular spatial regulatory causality with extracellular signaling path information. Benchmarking across synthetic and real datasets demonstrates SpaGRN's superior precision over state-of-the-art tools in identifying context-dependent regulons. Applied to diverse spatially resolved transcriptomics platforms (Stereo-seq, STARmap, MERFISH, CosMx, Slide-seq, and 10x Visium), complex cancerous samples, and 3D datasets of developing Drosophila embryos and larvae, SpaGRN not only provides a versatile toolkit for decoding receptor-mediated spatial regulons but also reveals spatiotemporal regulatory mechanisms underlying organogenesis and inflammation.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SpaGRN:研究空间解析转录组学数据的空间知情调控路径。
细胞通过局部基因调控网络在空间上组织成不同的细胞类型或功能域。然而,目前的空间解析转录组学分析未能整合空间约束和近端细胞的影响,从而限制了对组织组织机理的理解。在这里,我们介绍一种统计框架 SpaGRN,它通过将细胞内空间调控因果关系与细胞外信号路径信息相结合,重建细胞类型或功能域特异的、动态的空间调控子。对合成数据集和真实数据集的基准测试表明,SpaGRN 在识别上下文相关调控子方面的精确度优于最先进的工具。将 SpaGRN 应用于各种空间解析转录组学平台(Stereo-seq、STARmap、MERFISH、CosMx、Slide-seq 和 10x Visium)、复杂的癌症样本以及发育中果蝇胚胎和幼虫的三维数据集,SpaGRN 不仅为解码受体介导的空间调控子提供了一个多功能工具包,还揭示了器官发生和炎症的时空调控机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
DynamicGT: A dynamic-aware geometric transformer model to predict protein-binding interfaces in flexible and disordered regions. Core passive and facultative mTOR-mediated mechanisms coordinate mammalian protein synthesis and decay. Transgene integration in mammalian cells: The tools, the challenges, and the future. Translating synthetic gene circuits into the clinic: Challenges, opportunities, and future directions. Low-burden and precursor-free cell-cell communication in mammalian cells enabled by denovo design of super-sensitive intercellular signals.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1