Single-pixel imaging through random media with automated adaptive corrections

IF 3.6 2区 物理与天体物理 Q2 PHYSICS, APPLIED Applied Physics Letters Pub Date : 2025-04-04 DOI:10.1063/5.0257816
Yining Hao, Yin Xiao, Wen Chen
{"title":"Single-pixel imaging through random media with automated adaptive corrections","authors":"Yining Hao, Yin Xiao, Wen Chen","doi":"10.1063/5.0257816","DOIUrl":null,"url":null,"abstract":"The existence of random media is challenging in optical imaging, as the existing approaches usually cannot work well when the optical channel exhibits a certain level of randomness. Here, we report an automated adaptive correction scheme for single-pixel imaging through random media. An alternating projection method is developed to reconstruct an object from light intensities recorded by a single-pixel detector. A series of scaling factors are incorporated into object reconstruction to correct wave distortions induced by random media. With the introduced scaling factors, an essential relationship between collected and theoretical light intensities is revealed. It is illustrated that the proposed corrections on the realizations do not require prior knowledge about random media, and can be adapted to various real-world scenarios. High-quality imaging through random media can always be realized in experiments, and the proposed approach opens up an avenue for high-quality imaging through random media in various applications.","PeriodicalId":8094,"journal":{"name":"Applied Physics Letters","volume":"59 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Physics Letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0257816","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

The existence of random media is challenging in optical imaging, as the existing approaches usually cannot work well when the optical channel exhibits a certain level of randomness. Here, we report an automated adaptive correction scheme for single-pixel imaging through random media. An alternating projection method is developed to reconstruct an object from light intensities recorded by a single-pixel detector. A series of scaling factors are incorporated into object reconstruction to correct wave distortions induced by random media. With the introduced scaling factors, an essential relationship between collected and theoretical light intensities is revealed. It is illustrated that the proposed corrections on the realizations do not require prior knowledge about random media, and can be adapted to various real-world scenarios. High-quality imaging through random media can always be realized in experiments, and the proposed approach opens up an avenue for high-quality imaging through random media in various applications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过随机介质进行单像素成像,并自动进行自适应修正
随机介质的存在给光学成像带来了挑战,当光通道具有一定程度的随机性时,现有的方法通常不能很好地工作。在这里,我们报告了一种通过随机介质进行单像素成像的自动自适应校正方案。提出了一种利用单像素探测器记录的光强重建物体的交替投影方法。在物体重建中加入一系列的尺度因子来校正随机介质引起的波畸变。通过引入比例因子,揭示了采集光强与理论光强之间的本质关系。结果表明,在实现上提出的修正不需要关于随机介质的先验知识,并且可以适应各种现实世界的场景。实验中总是可以实现随机介质的高质量成像,该方法为各种应用中的随机介质高质量成像开辟了一条途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Applied Physics Letters
Applied Physics Letters 物理-物理:应用
CiteScore
6.40
自引率
10.00%
发文量
1821
审稿时长
1.6 months
期刊介绍: Applied Physics Letters (APL) features concise, up-to-date reports on significant new findings in applied physics. Emphasizing rapid dissemination of key data and new physical insights, APL offers prompt publication of new experimental and theoretical papers reporting applications of physics phenomena to all branches of science, engineering, and modern technology. In addition to regular articles, the journal also publishes invited Fast Track, Perspectives, and in-depth Editorials which report on cutting-edge areas in applied physics. APL Perspectives are forward-looking invited letters which highlight recent developments or discoveries. Emphasis is placed on very recent developments, potentially disruptive technologies, open questions and possible solutions. They also include a mini-roadmap detailing where the community should direct efforts in order for the phenomena to be viable for application and the challenges associated with meeting that performance threshold. Perspectives are characterized by personal viewpoints and opinions of recognized experts in the field. Fast Track articles are invited original research articles that report results that are particularly novel and important or provide a significant advancement in an emerging field. Because of the urgency and scientific importance of the work, the peer review process is accelerated. If, during the review process, it becomes apparent that the paper does not meet the Fast Track criterion, it is returned to a normal track.
期刊最新文献
Quantized topological transport mediated by the long-range couplings Transparent CuGaO2/BaTiO3 nanoarray pn junction with high-entropy perovskite quantum dots for enhanced photoelectric response Ultrafast voltage-induced switching enabled by coupling dynamics in perpendicular magnetic tunnel junction Photovoltaic nuclear electric battery based on single-crystal diamond core activated with carbon-14 Photoluminescence excitation spectroscopy of quantum wire-like dislocation states in ZnS
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1