Paulina Szymoniak , Mohamed A. Kolmangadi , Martin Böhning , Nicolas R. De Souza , Fanni Juranyi , Reiner Zorn , Andreas Schönhals
{"title":"Inelastic and quasielastic neutron scattering on polynorbornenes with bulky carbocyclic side groups","authors":"Paulina Szymoniak , Mohamed A. Kolmangadi , Martin Böhning , Nicolas R. De Souza , Fanni Juranyi , Reiner Zorn , Andreas Schönhals","doi":"10.1016/j.polymer.2025.128358","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigates the molecular mobility and vibrational properties of polynorbornenes with bulky carbocyclic side groups using inelastic and quasielastic neutron scattering techniques. The polymers, synthesized via metathesis and addition polymerization, exhibit varying degrees of microporosity, which significantly influences their gas separation performance. By inelastic neutron scattering experiments, it could be shown that all considered polymers have excess contributions to the low frequency vibrational density of states known as the Boson peak. The maximum frequency of the Boson peak correlates to the microporosity of the polymers. This correlation supports the sound wave interpretation of the Boson peak, suggesting that the microporous structure enhances the compressibility of the material at a microscopic length scale. The molecular mobility, particularly the methyl group rotation, was characterized using elastic scans and quasielastic neutron scattering. The study revealed a temperature dependent relaxation process, with the onset of molecular fluctuations observed around 200 K for the polymer containing methyl groups. For the polymer having no methyl groups only elastic scattering is observed. The methyl group rotation was analyzed in terms of a jump diffusion in a threefold potential with three equivalent energy minima. This leads to an almost correct description of the q dependence of the elastic incoherent scattering function when the number of hydrogen nuclei undergoing the methyl group rotation is considered. It was further evidenced that the fraction of methyl undergoing the methyl group rotation increases with increasing temperature.</div></div>","PeriodicalId":405,"journal":{"name":"Polymer","volume":"328 ","pages":"Article 128358"},"PeriodicalIF":4.5000,"publicationDate":"2025-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0032386125003441","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigates the molecular mobility and vibrational properties of polynorbornenes with bulky carbocyclic side groups using inelastic and quasielastic neutron scattering techniques. The polymers, synthesized via metathesis and addition polymerization, exhibit varying degrees of microporosity, which significantly influences their gas separation performance. By inelastic neutron scattering experiments, it could be shown that all considered polymers have excess contributions to the low frequency vibrational density of states known as the Boson peak. The maximum frequency of the Boson peak correlates to the microporosity of the polymers. This correlation supports the sound wave interpretation of the Boson peak, suggesting that the microporous structure enhances the compressibility of the material at a microscopic length scale. The molecular mobility, particularly the methyl group rotation, was characterized using elastic scans and quasielastic neutron scattering. The study revealed a temperature dependent relaxation process, with the onset of molecular fluctuations observed around 200 K for the polymer containing methyl groups. For the polymer having no methyl groups only elastic scattering is observed. The methyl group rotation was analyzed in terms of a jump diffusion in a threefold potential with three equivalent energy minima. This leads to an almost correct description of the q dependence of the elastic incoherent scattering function when the number of hydrogen nuclei undergoing the methyl group rotation is considered. It was further evidenced that the fraction of methyl undergoing the methyl group rotation increases with increasing temperature.
期刊介绍:
Polymer is an interdisciplinary journal dedicated to publishing innovative and significant advances in Polymer Physics, Chemistry and Technology. We welcome submissions on polymer hybrids, nanocomposites, characterisation and self-assembly. Polymer also publishes work on the technological application of polymers in energy and optoelectronics.
The main scope is covered but not limited to the following core areas:
Polymer Materials
Nanocomposites and hybrid nanomaterials
Polymer blends, films, fibres, networks and porous materials
Physical Characterization
Characterisation, modelling and simulation* of molecular and materials properties in bulk, solution, and thin films
Polymer Engineering
Advanced multiscale processing methods
Polymer Synthesis, Modification and Self-assembly
Including designer polymer architectures, mechanisms and kinetics, and supramolecular polymerization
Technological Applications
Polymers for energy generation and storage
Polymer membranes for separation technology
Polymers for opto- and microelectronics.