Insights into the reactivity of Ni-La catalysts for CO2 methanation

IF 8.4 2区 工程技术 Q1 CHEMISTRY, MULTIDISCIPLINARY Journal of CO2 Utilization Pub Date : 2025-04-05 DOI:10.1016/j.jcou.2025.103076
Luca Consentino , Miriam González-Castaño , Nuría Garcia-Moncada , Luis F. Bobadilla , Michelangelo Gruttadauria , Leonarda Francesca Liotta , José Antonio Odriozola
{"title":"Insights into the reactivity of Ni-La catalysts for CO2 methanation","authors":"Luca Consentino ,&nbsp;Miriam González-Castaño ,&nbsp;Nuría Garcia-Moncada ,&nbsp;Luis F. Bobadilla ,&nbsp;Michelangelo Gruttadauria ,&nbsp;Leonarda Francesca Liotta ,&nbsp;José Antonio Odriozola","doi":"10.1016/j.jcou.2025.103076","DOIUrl":null,"url":null,"abstract":"<div><div>Efficient catalysts are essential for CO<sub>2</sub> methanation reaction, a key process for sustainable energy applications. This study investigates the structural and chemical properties of Ni-La perovskite-based catalysts synthesized <em>via</em> one-pot and impregnation methods by microwave-assisted synthesis to improve Ni dispersion and phase homogeneity. Reduction temperature emerges as a key factor influencing catalyst structure and performance. Catalysts reduced at lower temperatures retain perovskite structures, leading to enhanced metal-support interactions, which are crucial for CO₂ activation and methane production. In contrast, higher reduction temperatures decompose the perovskite phase into metallic Ni and La₂O₃, which alters the catalytic behavior. The impregnation method enhances Ni dispersion, leading to higher metallic Ni availability and superior catalytic performance. Oxygen vacancies and carbonate species formed on the catalyst surface are identified as central to the reaction mechanism, facilitating CO₂ adsorption and conversion. This research underscores the importance of structure-to-function relationships, focusing on how synthesis methods and reduction conditions shape surface species generation and CO<sub>2</sub> methanation rates. These insights advance the design of highly efficient catalysts for CO<sub>2</sub> conversion, addressing environmental challenges and fostering sustainable energy solutions.</div></div>","PeriodicalId":350,"journal":{"name":"Journal of CO2 Utilization","volume":"95 ","pages":"Article 103076"},"PeriodicalIF":8.4000,"publicationDate":"2025-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of CO2 Utilization","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212982025000605","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Efficient catalysts are essential for CO2 methanation reaction, a key process for sustainable energy applications. This study investigates the structural and chemical properties of Ni-La perovskite-based catalysts synthesized via one-pot and impregnation methods by microwave-assisted synthesis to improve Ni dispersion and phase homogeneity. Reduction temperature emerges as a key factor influencing catalyst structure and performance. Catalysts reduced at lower temperatures retain perovskite structures, leading to enhanced metal-support interactions, which are crucial for CO₂ activation and methane production. In contrast, higher reduction temperatures decompose the perovskite phase into metallic Ni and La₂O₃, which alters the catalytic behavior. The impregnation method enhances Ni dispersion, leading to higher metallic Ni availability and superior catalytic performance. Oxygen vacancies and carbonate species formed on the catalyst surface are identified as central to the reaction mechanism, facilitating CO₂ adsorption and conversion. This research underscores the importance of structure-to-function relationships, focusing on how synthesis methods and reduction conditions shape surface species generation and CO2 methanation rates. These insights advance the design of highly efficient catalysts for CO2 conversion, addressing environmental challenges and fostering sustainable energy solutions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Ni-La催化剂对CO2甲烷化反应性的研究
二氧化碳甲烷化反应是可持续能源应用的关键过程,高效催化剂是其关键。本研究采用微波辅助合成法,通过一锅法和浸渍法制备了镍- la钙钛矿基催化剂,以改善镍的分散性和相均匀性。还原温度是影响催化剂结构和性能的关键因素。在较低温度下还原的催化剂保留了钙钛矿结构,从而增强了金属-载体相互作用,这对CO 2活化和甲烷生成至关重要。相反,较高的还原温度将钙钛矿相分解为金属Ni和La₂O₃,这改变了催化行为。浸渍法提高了镍的分散性,提高了金属镍的可用性和催化性能。在催化剂表面形成的氧空位和碳酸盐是反应机制的核心,促进了CO₂的吸附和转化。本研究强调了结构-功能关系的重要性,重点关注了合成方法和还原条件如何影响表面物质的生成和二氧化碳甲烷化速率。这些见解推动了高效二氧化碳转化催化剂的设计,解决了环境挑战并促进了可持续能源解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of CO2 Utilization
Journal of CO2 Utilization CHEMISTRY, MULTIDISCIPLINARY-ENGINEERING, CHEMICAL
CiteScore
13.90
自引率
10.40%
发文量
406
审稿时长
2.8 months
期刊介绍: The Journal of CO2 Utilization offers a single, multi-disciplinary, scholarly platform for the exchange of novel research in the field of CO2 re-use for scientists and engineers in chemicals, fuels and materials. The emphasis is on the dissemination of leading-edge research from basic science to the development of new processes, technologies and applications. The Journal of CO2 Utilization publishes original peer-reviewed research papers, reviews, and short communications, including experimental and theoretical work, and analytical models and simulations.
期刊最新文献
Sensitivity analysis of the H2S breakthrough curve in a column packed with type 13X zeolite: Parametric study of pressure swing adsorption process for CO2 separation and biomethane production High-yield solar photocatalytic CO₂ conversion in dense-phase CO₂ via ZnO/CuO/Ti₃C₂ nanosheet heterojunctions with ionic liquids Solar photothermo-catalytic CO2 conversion into methane: Effect of phyllosilicates on the performance of Ni-Zn-Al layered double hydroxide-derived catalysts Numerical simulation and optimization of a CO2 absorption tower using solution absorption method for capture Advanced solar–geothermal polygeneration system for CO2-based power, hydrogen, and freshwater recovery via transcritical CO2 rankine cycle
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1