François Orange, Sophie Pagnotta, Olivier Pierre, Janice de Almeida Engler
{"title":"Application of array tomography to elucidate nuclear clustering architecture in giant-feeding cells induced by root-knot nematodes","authors":"François Orange, Sophie Pagnotta, Olivier Pierre, Janice de Almeida Engler","doi":"10.1111/nph.70066","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>\n </p><ul>\n \n <li>Plant-parasitic nematodes like root-knot nematodes (RKN; <i>Meloidogyne</i> spp.) cause great losses in agriculture by inducing root swellings, named galls, in host roots disturbing plant growth and development. Previous two-dimensional studies using different microscopy techniques revealed the presence of numerous nuclear clusters in nematode-induced giant cells within galls.</li>\n \n <li>Here, we show in three dimensions (3D) that nuclear clustering occurring in giant cells is revealed to be much more complex, illustrating subclusters built of multiple nuclear lobes. These nuclear subclusters are unveiled to be interconnected and likely communicate via nucleotubes, highlighting the potential relevance of this nuclear transfer for disease. In addition, microtubules and microtubule organizing centers are profusely present between the densely packed nuclear lobes, suggesting that the cytoskeleton might be involved in anchoring nuclear clusters in giant cells.</li>\n \n <li>This study illustrates that it is possible to apply volume electron microscopy (EM) approaches such as array tomography (AT) to roots infected by nematodes using basic equipment found in most EM facilities. The application of AT was valuable to observe the cellular ultrastructure in 3D, revealing the remarkable nuclear architecture of giant cells in the model host <i>Arabidopsis thaliana</i>.</li>\n \n <li>The discovery of nucleotubes, as a unique component of nuclear clusters present in giant cells, can be potentially exploited as a novel strategy to develop alternative approaches for RKN control in crop species.</li>\n </ul>\n </div>","PeriodicalId":214,"journal":{"name":"New Phytologist","volume":"246 5","pages":"2346-2369"},"PeriodicalIF":8.1000,"publicationDate":"2025-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Phytologist","FirstCategoryId":"99","ListUrlMain":"https://nph.onlinelibrary.wiley.com/doi/10.1111/nph.70066","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Plant-parasitic nematodes like root-knot nematodes (RKN; Meloidogyne spp.) cause great losses in agriculture by inducing root swellings, named galls, in host roots disturbing plant growth and development. Previous two-dimensional studies using different microscopy techniques revealed the presence of numerous nuclear clusters in nematode-induced giant cells within galls.
Here, we show in three dimensions (3D) that nuclear clustering occurring in giant cells is revealed to be much more complex, illustrating subclusters built of multiple nuclear lobes. These nuclear subclusters are unveiled to be interconnected and likely communicate via nucleotubes, highlighting the potential relevance of this nuclear transfer for disease. In addition, microtubules and microtubule organizing centers are profusely present between the densely packed nuclear lobes, suggesting that the cytoskeleton might be involved in anchoring nuclear clusters in giant cells.
This study illustrates that it is possible to apply volume electron microscopy (EM) approaches such as array tomography (AT) to roots infected by nematodes using basic equipment found in most EM facilities. The application of AT was valuable to observe the cellular ultrastructure in 3D, revealing the remarkable nuclear architecture of giant cells in the model host Arabidopsis thaliana.
The discovery of nucleotubes, as a unique component of nuclear clusters present in giant cells, can be potentially exploited as a novel strategy to develop alternative approaches for RKN control in crop species.
期刊介绍:
New Phytologist is an international electronic journal published 24 times a year. It is owned by the New Phytologist Foundation, a non-profit-making charitable organization dedicated to promoting plant science. The journal publishes excellent, novel, rigorous, and timely research and scholarship in plant science and its applications. The articles cover topics in five sections: Physiology & Development, Environment, Interaction, Evolution, and Transformative Plant Biotechnology. These sections encompass intracellular processes, global environmental change, and encourage cross-disciplinary approaches. The journal recognizes the use of techniques from molecular and cell biology, functional genomics, modeling, and system-based approaches in plant science. Abstracting and Indexing Information for New Phytologist includes Academic Search, AgBiotech News & Information, Agroforestry Abstracts, Biochemistry & Biophysics Citation Index, Botanical Pesticides, CAB Abstracts®, Environment Index, Global Health, and Plant Breeding Abstracts, and others.