Enhanced nitrate-to-ammonia electroreduction on manganese-doped ceria with oxygen vacancies

IF 13.2 1区 工程技术 Q1 ENGINEERING, CHEMICAL Chemical Engineering Journal Pub Date : 2025-04-06 DOI:10.1016/j.cej.2025.162323
Xiaoting Sun, Wanting Rong, Lanfang Wang, Jiangnan Lv, Ruixia Yang, Tingting Liang, Qianwen Yang, Xiaohong Xu, Yang Liu
{"title":"Enhanced nitrate-to-ammonia electroreduction on manganese-doped ceria with oxygen vacancies","authors":"Xiaoting Sun, Wanting Rong, Lanfang Wang, Jiangnan Lv, Ruixia Yang, Tingting Liang, Qianwen Yang, Xiaohong Xu, Yang Liu","doi":"10.1016/j.cej.2025.162323","DOIUrl":null,"url":null,"abstract":"Electrochemical NO<sub>3</sub><sup>–</sup> reduction reaction (NO<sub>3</sub><sup>−</sup>RR) represents a promising avenue for efficient and sustainable synthesis of ammonia (NH<sub>3</sub>), with active hydrogen playing a pivotal role in multiple hydrogenation steps. Manganese (Mn)-based electrocatalysts have demonstrated potential in modulating active hydrogen, however, achieving atomically dispersed Mn active sites poses a fundamental challenge. To address the issue, we synthesize Mn-doped ceria with oxygen vacancies (Mn-CeO<sub>2−</sub><em><sub>x</sub></em>) nanoparticles, where Mn<sup>2+</sup> is stabilized within the CeO<sub>2−</sub><em><sub>x</sub></em> host lattice, to facilitate efficient NO<sub>3</sub><sup>−</sup> reduction to NH<sub>3</sub>. The highest NH<sub>3</sub> FE of 91.8 % is observed over Mn-CeO<sub>2−</sub><em><sub>x</sub></em> catalyst at −0.60 V<sub>RHE</sub> and the maximum NH<sub>3</sub> yield rate reaches 1.01 mmol h<sup>−1</sup> cm<sup>−2</sup>, outperforming other metal (M = Fe, Co, Ni, and Cu) doped and undoped CeO<sub>2−</sub><em><sub>x</sub></em> nanoparticles. Experimental analysis and density functional theory (DFT) calculations cooperatively elucidate that the Mn doping optimizes the electronic structure of CeO<sub>2−</sub><em><sub>x</sub></em> catalysts, leading to the generation of ample active hydrogen, improve the reaction kinetics and promote the *NH<sub>2</sub>O → *NH<sub>2</sub>OH step in NO<sub>3</sub><sup>−</sup>RR. Our study introduces a rare-earth metal oxide platform for dispersing transition metal active sites, enabling the regulation of active hydrogen and the enhancement of electrocatalytic performance in NO<sub>3</sub><sup>−</sup>RR.","PeriodicalId":270,"journal":{"name":"Chemical Engineering Journal","volume":"59 1","pages":""},"PeriodicalIF":13.2000,"publicationDate":"2025-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.cej.2025.162323","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Electrochemical NO3 reduction reaction (NO3RR) represents a promising avenue for efficient and sustainable synthesis of ammonia (NH3), with active hydrogen playing a pivotal role in multiple hydrogenation steps. Manganese (Mn)-based electrocatalysts have demonstrated potential in modulating active hydrogen, however, achieving atomically dispersed Mn active sites poses a fundamental challenge. To address the issue, we synthesize Mn-doped ceria with oxygen vacancies (Mn-CeO2−x) nanoparticles, where Mn2+ is stabilized within the CeO2−x host lattice, to facilitate efficient NO3 reduction to NH3. The highest NH3 FE of 91.8 % is observed over Mn-CeO2−x catalyst at −0.60 VRHE and the maximum NH3 yield rate reaches 1.01 mmol h−1 cm−2, outperforming other metal (M = Fe, Co, Ni, and Cu) doped and undoped CeO2−x nanoparticles. Experimental analysis and density functional theory (DFT) calculations cooperatively elucidate that the Mn doping optimizes the electronic structure of CeO2−x catalysts, leading to the generation of ample active hydrogen, improve the reaction kinetics and promote the *NH2O → *NH2OH step in NO3RR. Our study introduces a rare-earth metal oxide platform for dispersing transition metal active sites, enabling the regulation of active hydrogen and the enhancement of electrocatalytic performance in NO3RR.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
氧空位对锰掺杂二氧化铈的强化硝酸-氨电还原
电化学NO3 -还原反应(NO3 - RR)是一种高效、可持续合成氨(NH3)的有前途的途径,其中活性氢在多个加氢步骤中起着关键作用。锰(Mn)基电催化剂在调节活性氢方面已经显示出潜力,然而,实现原子分散的锰活性位点是一个根本性的挑战。为了解决这一问题,我们合成了带有氧空位的mn掺杂二氧化铈纳米粒子(Mn-CeO2−x),其中Mn2+稳定在CeO2−x主体晶格内,以促进NO3−高效还原为NH3。在−0.60 VRHE条件下,Mn-CeO2−x纳米粒子的NH3 FE最高可达91.8 %,NH3产率最高可达1.01 mmol h−1 cm−2,优于其他金属(M = FE, Co, Ni和Cu)掺杂和未掺杂的CeO2−x纳米粒子。实验分析和密度泛函理论(DFT)计算共同表明,Mn掺杂优化了CeO2−x催化剂的电子结构,生成了充足的活性氢,改善了反应动力学,促进了NO3−RR中*NH2O → *NH2OH步进。我们的研究引入了一种稀土金属氧化物平台,用于分散过渡金属活性位点,从而调节活性氢,提高NO3−RR的电催化性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Chemical Engineering Journal
Chemical Engineering Journal 工程技术-工程:化工
CiteScore
21.70
自引率
9.30%
发文量
6781
审稿时长
2.4 months
期刊介绍: The Chemical Engineering Journal is an international research journal that invites contributions of original and novel fundamental research. It aims to provide an international platform for presenting original fundamental research, interpretative reviews, and discussions on new developments in chemical engineering. The journal welcomes papers that describe novel theory and its practical application, as well as those that demonstrate the transfer of techniques from other disciplines. It also welcomes reports on carefully conducted experimental work that is soundly interpreted. The main focus of the journal is on original and rigorous research results that have broad significance. The Catalysis section within the Chemical Engineering Journal focuses specifically on Experimental and Theoretical studies in the fields of heterogeneous catalysis, molecular catalysis, and biocatalysis. These studies have industrial impact on various sectors such as chemicals, energy, materials, foods, healthcare, and environmental protection.
期刊最新文献
3D printed hierarchical porous amino-functionalized graphene oxide/activated carbon adsorbent composites for pharmaceuticals removal Enhanced interphase kinetics via regulation of solvation structure for high performance magnesium metal batteries Mechanically robust long-persistent luminescent hydrogels enabled by synergistic multi-level rigidity and confined crystallization Phosphorus–carbon nitride hybridization enables spatial co-localization of electrons and reactants for enhancing metal-free nitrogen photofixation Preparation of porous SPES/PES cation exchange membrane with interconnected spongy morphology for membrane capacitive deionization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1