Co-Cu-Al-Ox for chloramphenicol degradation: Modification of CoOx coordination and electronic environment by Cu incorporation

IF 6.9 2区 材料科学 Q2 CHEMISTRY, PHYSICAL Applied Surface Science Pub Date : 2025-04-06 DOI:10.1016/j.apsusc.2025.163130
Xiaoxi Guo , Zhuoyan Liu , Jiajia Lan , Hongyang Wu , Yi-Fan Han
{"title":"Co-Cu-Al-Ox for chloramphenicol degradation: Modification of CoOx coordination and electronic environment by Cu incorporation","authors":"Xiaoxi Guo ,&nbsp;Zhuoyan Liu ,&nbsp;Jiajia Lan ,&nbsp;Hongyang Wu ,&nbsp;Yi-Fan Han","doi":"10.1016/j.apsusc.2025.163130","DOIUrl":null,"url":null,"abstract":"<div><div>In heterogeneous Fenton catalysis, the modification of electronic structures at active sites is crucial for enhancing degradation efficiency. This strategy enhances the activation of H<sub>2</sub>O<sub>2</sub> and the subsequent generation of hydroxyl radicals (·OH). However, the effectiveness of these processes is often limited by suboptimal coordination environments at the active sites. In this study, we synthesized a series of MAl<sub>2</sub>O<sub>4</sub> (M=Co and/or Cu) catalysts with spinel structures, specifically tailored for the efficient degradation of chloramphenicol (CAP). We modulated the electronic structure at the active sites by strategically incorporating Cu atoms, controlling the doping concentration to boost the surface enrichment of Cu-embedded CoO<sub>6</sub> on CoAl<sub>2</sub>O<sub>4</sub>, thus optimizing catalyst performance. This alteration promotes Cu–O-Co interactions within the MO<sub>6</sub> environment, enhancing the reducibility of Cu atoms and boosting electron donation and transfer during reactions. This improvement leads to more effective adsorption of H<sub>2</sub>O<sub>2</sub> and enhanced desorption of hydroxyl radicals, coupled with improved regeneration of active sites. The optimized Co<sub>7.5</sub>Cu<sub>2.5</sub>/Al<sub>2</sub>O<sub>3</sub> catalyst achieved a remarkable 95.5 % conversion rate of chloramphenicol, demonstrating its potential as an effective solution for treating persistent organic pollutants.</div></div>","PeriodicalId":247,"journal":{"name":"Applied Surface Science","volume":"699 ","pages":"Article 163130"},"PeriodicalIF":6.9000,"publicationDate":"2025-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Surface Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S016943322500844X","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In heterogeneous Fenton catalysis, the modification of electronic structures at active sites is crucial for enhancing degradation efficiency. This strategy enhances the activation of H2O2 and the subsequent generation of hydroxyl radicals (·OH). However, the effectiveness of these processes is often limited by suboptimal coordination environments at the active sites. In this study, we synthesized a series of MAl2O4 (M=Co and/or Cu) catalysts with spinel structures, specifically tailored for the efficient degradation of chloramphenicol (CAP). We modulated the electronic structure at the active sites by strategically incorporating Cu atoms, controlling the doping concentration to boost the surface enrichment of Cu-embedded CoO6 on CoAl2O4, thus optimizing catalyst performance. This alteration promotes Cu–O-Co interactions within the MO6 environment, enhancing the reducibility of Cu atoms and boosting electron donation and transfer during reactions. This improvement leads to more effective adsorption of H2O2 and enhanced desorption of hydroxyl radicals, coupled with improved regeneration of active sites. The optimized Co7.5Cu2.5/Al2O3 catalyst achieved a remarkable 95.5 % conversion rate of chloramphenicol, demonstrating its potential as an effective solution for treating persistent organic pollutants.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Co-Cu-Al-Ox降解氯霉素:Cu掺入对CoOx配位和电子环境的影响
在非均相Fenton催化中,活性位点的电子结构修饰是提高降解效率的关键。这种策略增强了H2O2的活化和随后产生的羟基自由基(·OH)。然而,这些过程的有效性常常受到活性位点的次优协调环境的限制。在这项研究中,我们合成了一系列尖晶石结构的MAl2O4 (M=Co和/或Cu)催化剂,专门用于高效降解氯霉素(CAP)。我们通过战略性地掺入Cu原子来调节活性位点的电子结构,控制掺杂浓度,从而提高Cu包埋的CoO6在CoAl2O4上的表面富集,从而优化催化剂的性能。这种改变促进了Cu - o - co在MO6环境中的相互作用,增强了Cu原子的还原性,促进了反应过程中的电子给能和转移。这种改进导致H2O2的更有效吸附和羟基自由基的解吸增强,同时活性位点的再生也得到了改善。优化后的Co7.5Cu2.5/Al2O3催化剂对氯霉素的转化率达到了95.5 %,显示了其作为处理持久性有机污染物的有效溶液的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Applied Surface Science
Applied Surface Science 工程技术-材料科学:膜
CiteScore
12.50
自引率
7.50%
发文量
3393
审稿时长
67 days
期刊介绍: Applied Surface Science covers topics contributing to a better understanding of surfaces, interfaces, nanostructures and their applications. The journal is concerned with scientific research on the atomic and molecular level of material properties determined with specific surface analytical techniques and/or computational methods, as well as the processing of such structures.
期刊最新文献
Tailoring of surface and electronic structure of Sm3+-substituted Mn-Co spinel ferrites for magnetically separable and visible light driven multi-pollutant degradation Adhesion forces between AFM tips and TiO2 nanoparticles to investigate the formation of natural coatings Synergistic effect of Mn–O–Fe bonding and triggered charge compensation for industrial OER stability Durable low-friction plasma-polymerized coating for suture needles ensuring safety An enhanced CMAS corrosion and oxidation resistance performance in Hf6Ta2O17/YSZ thermal barrier coatings with limited ion diffusion ability
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1