Dislocation-engineered MoNb12-xVxO33 for ultra-fast and stable lithium storage at low temperature

IF 6.9 2区 材料科学 Q2 CHEMISTRY, PHYSICAL Applied Surface Science Pub Date : 2025-04-06 DOI:10.1016/j.apsusc.2025.163184
Qiushi Cheng , Jiayu Chen , Chenzheng Yue , Kai Yu , Guang Yang , Huiying Mu , Wei Su , Yingjuan Hao , Ning Lin , Fatang Li
{"title":"Dislocation-engineered MoNb12-xVxO33 for ultra-fast and stable lithium storage at low temperature","authors":"Qiushi Cheng ,&nbsp;Jiayu Chen ,&nbsp;Chenzheng Yue ,&nbsp;Kai Yu ,&nbsp;Guang Yang ,&nbsp;Huiying Mu ,&nbsp;Wei Su ,&nbsp;Yingjuan Hao ,&nbsp;Ning Lin ,&nbsp;Fatang Li","doi":"10.1016/j.apsusc.2025.163184","DOIUrl":null,"url":null,"abstract":"<div><div>The advancement of lithium-ion batteries with high power density at low temperature is limited by sluggish Li<sup>+</sup> diffusion kinetics and exacerbated polarization effects. Herein, MoNb<sub>12-x</sub>V<sub>x</sub>O<sub>33</sub> with abundant dislocations is constructed by a hetero-atom doping strategy, demonstrating enhanced fast rechargeability and low-temperature kinetics. The presence of dislocations in MoNb<sub>12-x</sub>V<sub>x</sub>O<sub>33</sub> lattice has been confirmed using transmission electron microscope, inverse fast Fourier transform and geometrical phase analysis. The dislocation-rich structure enables a reduction in Li<sup>+</sup> desolvation barrier, lowers Li<sup>+</sup> site energy and enhances Li<sup>+</sup> diffusion capability, particularly at low temperature. The boosted ion diffusion and electronic transport have been established through multiple kinetic analyses and theoretical calculations. Furthermore, the introduced dislocations facilitate stress relief<!--> <!-->and maintain structural stability during rapid (de)lithiation procedures. Consequently, MoNb<sub>12-x</sub>V<sub>x</sub>O<sub>33</sub> displays a high reversible capacity of 116.8 mAh g<sup>−1</sup> at 100C. Particularly at −20 °C, MoNb<sub>12-x</sub>V<sub>x</sub>O<sub>33</sub> demonstrates exceptional long-term cycling stability exceeding 7000 cycles at 5C with 98.9 % capacity retention.</div></div>","PeriodicalId":247,"journal":{"name":"Applied Surface Science","volume":"699 ","pages":"Article 163184"},"PeriodicalIF":6.9000,"publicationDate":"2025-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Surface Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169433225008980","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The advancement of lithium-ion batteries with high power density at low temperature is limited by sluggish Li+ diffusion kinetics and exacerbated polarization effects. Herein, MoNb12-xVxO33 with abundant dislocations is constructed by a hetero-atom doping strategy, demonstrating enhanced fast rechargeability and low-temperature kinetics. The presence of dislocations in MoNb12-xVxO33 lattice has been confirmed using transmission electron microscope, inverse fast Fourier transform and geometrical phase analysis. The dislocation-rich structure enables a reduction in Li+ desolvation barrier, lowers Li+ site energy and enhances Li+ diffusion capability, particularly at low temperature. The boosted ion diffusion and electronic transport have been established through multiple kinetic analyses and theoretical calculations. Furthermore, the introduced dislocations facilitate stress relief and maintain structural stability during rapid (de)lithiation procedures. Consequently, MoNb12-xVxO33 displays a high reversible capacity of 116.8 mAh g−1 at 100C. Particularly at −20 °C, MoNb12-xVxO33 demonstrates exceptional long-term cycling stability exceeding 7000 cycles at 5C with 98.9 % capacity retention.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
位错设计的MoNb12-xVxO33用于超高速和稳定的低温锂存储
低温下高功率密度锂离子电池的发展受到Li+扩散动力学缓慢和极化效应加剧的限制。本文通过杂原子掺杂策略构建了位错丰富的MoNb12-xVxO33,表现出增强的快速可充电性和低温动力学。利用透射电镜、快速反傅立叶变换和几何相分析证实了MoNb12-xVxO33晶格中位错的存在。富位错结构降低了Li+的脱溶势垒,降低了Li+的位能,增强了Li+的扩散能力,特别是在低温下。通过多次动力学分析和理论计算,建立了离子扩散和电子输运的理论基础。此外,在快速(去)锂化过程中,引入的位错有助于应力释放并保持结构稳定性。因此,MoNb12-xVxO33在100C时显示出116.8 mAh g−1的高可逆容量。特别是在- 20 °C下,MoNb12-xVxO33表现出卓越的长期循环稳定性,在5C下超过7000次循环,容量保持率为98.9 %。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Applied Surface Science
Applied Surface Science 工程技术-材料科学:膜
CiteScore
12.50
自引率
7.50%
发文量
3393
审稿时长
67 days
期刊介绍: Applied Surface Science covers topics contributing to a better understanding of surfaces, interfaces, nanostructures and their applications. The journal is concerned with scientific research on the atomic and molecular level of material properties determined with specific surface analytical techniques and/or computational methods, as well as the processing of such structures.
期刊最新文献
Tailoring of surface and electronic structure of Sm3+-substituted Mn-Co spinel ferrites for magnetically separable and visible light driven multi-pollutant degradation Adhesion forces between AFM tips and TiO2 nanoparticles to investigate the formation of natural coatings Synergistic effect of Mn–O–Fe bonding and triggered charge compensation for industrial OER stability Durable low-friction plasma-polymerized coating for suture needles ensuring safety An enhanced CMAS corrosion and oxidation resistance performance in Hf6Ta2O17/YSZ thermal barrier coatings with limited ion diffusion ability
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1