Enhancing tubular solar still productivity: A novel rotational absorber, ultrasonic atomizer, and hygroscopic fabric integration

IF 6.3 2区 材料科学 Q2 ENERGY & FUELS Solar Energy Materials and Solar Cells Pub Date : 2025-04-07 DOI:10.1016/j.solmat.2025.113622
Fuhaid Alshammari , Nasser Alanazi , Mamdouh Alshammari , Ammar H. Elsheikh , Fadl A. Essa
{"title":"Enhancing tubular solar still productivity: A novel rotational absorber, ultrasonic atomizer, and hygroscopic fabric integration","authors":"Fuhaid Alshammari ,&nbsp;Nasser Alanazi ,&nbsp;Mamdouh Alshammari ,&nbsp;Ammar H. Elsheikh ,&nbsp;Fadl A. Essa","doi":"10.1016/j.solmat.2025.113622","DOIUrl":null,"url":null,"abstract":"<div><div>Freshwater scarcity is a growing global challenge, particularly in regions with abundant solar energy but limited access to clean water. Conventional solar stills offer a sustainable solution for freshwater production but suffer from low productivity and efficiency, limiting their practical application. This study addresses these limitations by introducing a novel tubular solar still design with operational enhancements aimed at significantly improving freshwater productivity and thermal efficiency. Key innovations include a centrally suspended rectangular absorber plate with an adjustable rotational mechanism, microcontroller-regulated rotational velocity control, and an ultrasonic atomizer at the still's apex to intermittently disperse water droplets for enhanced evaporation. Hygroscopic burlap fabrics (cotton and jute) were layered on the absorber to amplify surface evaporation. Comprehensive experiments optimized rotational speeds (0–2 rpm) and atomizer duty cycles (fixed 1-min activation with varied deactivation intervals: 2–10 min) to maximize freshwater yield through parametric refinement of rotational dynamics and misting cycles. Key parameters contributing to the system's performance include thermal efficiency, freshwater yield, cost-effectiveness, environmental impact, and durability. Experimental results demonstrated that the modified tubular solar distiller (MTSD) with a rotational suspended absorber increased freshwater yield by 18 % compared to the reference system (RTSD). Jute cloth outperformed cotton, achieving a 90 % productivity improvement versus 82 % for cotton. Optimal performance occurred under conditions combining jute cloth, 1 rpm rotation, and an atomizer duty cycle of 1 min ON/8 min OFF, yielding a 97 % productivity increase (6795 mL/m<sup>2</sup> for MTSD versus 3450 mL/m<sup>2</sup> for RTSD) and 49 % thermal efficiency, significantly surpassing the RTSD baseline. Life-cycle cost analysis demonstrated a 52 % reduction in unit production costs for the MTSD configuration with jute-based rotational operation (1 rpm), achieving 0.013/L, compared to 0.025/L for RTSD. These results underscore the efficacy of the design enhancements in maximizing solar still productivity, offering a promising solution to address freshwater scarcity in resource-limited settings.</div></div>","PeriodicalId":429,"journal":{"name":"Solar Energy Materials and Solar Cells","volume":"287 ","pages":"Article 113622"},"PeriodicalIF":6.3000,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Energy Materials and Solar Cells","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927024825002235","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Freshwater scarcity is a growing global challenge, particularly in regions with abundant solar energy but limited access to clean water. Conventional solar stills offer a sustainable solution for freshwater production but suffer from low productivity and efficiency, limiting their practical application. This study addresses these limitations by introducing a novel tubular solar still design with operational enhancements aimed at significantly improving freshwater productivity and thermal efficiency. Key innovations include a centrally suspended rectangular absorber plate with an adjustable rotational mechanism, microcontroller-regulated rotational velocity control, and an ultrasonic atomizer at the still's apex to intermittently disperse water droplets for enhanced evaporation. Hygroscopic burlap fabrics (cotton and jute) were layered on the absorber to amplify surface evaporation. Comprehensive experiments optimized rotational speeds (0–2 rpm) and atomizer duty cycles (fixed 1-min activation with varied deactivation intervals: 2–10 min) to maximize freshwater yield through parametric refinement of rotational dynamics and misting cycles. Key parameters contributing to the system's performance include thermal efficiency, freshwater yield, cost-effectiveness, environmental impact, and durability. Experimental results demonstrated that the modified tubular solar distiller (MTSD) with a rotational suspended absorber increased freshwater yield by 18 % compared to the reference system (RTSD). Jute cloth outperformed cotton, achieving a 90 % productivity improvement versus 82 % for cotton. Optimal performance occurred under conditions combining jute cloth, 1 rpm rotation, and an atomizer duty cycle of 1 min ON/8 min OFF, yielding a 97 % productivity increase (6795 mL/m2 for MTSD versus 3450 mL/m2 for RTSD) and 49 % thermal efficiency, significantly surpassing the RTSD baseline. Life-cycle cost analysis demonstrated a 52 % reduction in unit production costs for the MTSD configuration with jute-based rotational operation (1 rpm), achieving 0.013/L, compared to 0.025/L for RTSD. These results underscore the efficacy of the design enhancements in maximizing solar still productivity, offering a promising solution to address freshwater scarcity in resource-limited settings.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
提高管式太阳能蒸馏器的生产效率:一种新型旋转吸收器、超声波雾化器和吸湿织物的集成
淡水短缺是一个日益严重的全球挑战,特别是在太阳能丰富但获得清洁水的机会有限的地区。传统的太阳能蒸馏器为淡水生产提供了一种可持续的解决方案,但生产率和效率较低,限制了它们的实际应用。本研究通过引入一种新型管状太阳能蒸馏器设计来解决这些限制,该设计旨在显著提高淡水产量和热效率。关键的创新包括中央悬挂的矩形吸收板,可调节旋转机制,微控制器调节转速控制,以及在蒸馏器顶端的超声波雾化器,以间歇性地分散水滴以增强蒸发。吸湿麻袋织物(棉和黄麻)在吸收器上分层,以扩大表面蒸发。综合实验优化了转速(0-2 rpm)和雾化器占空比(固定1分钟激活,不同的停用间隔:2-10分钟),通过旋转动力学和雾化周期的参数化优化,最大限度地提高淡水产量。影响系统性能的关键参数包括热效率、淡水产量、成本效益、环境影响和耐用性。实验结果表明,与参考系统(RTSD)相比,带有旋转悬浮吸收器的改进管式太阳能蒸馏器(MTSD)的淡水产量提高了18%。黄麻布的表现优于棉花,其生产率提高了90%,而棉花的生产率提高了82%。在黄麻布、1转/分旋转和1分钟开/8分钟关的雾化器工作比条件下,产生了最佳性能,产生了97%的生产率提高(MTSD为6795 mL/m2, RTSD为3450 mL/m2)和49%的热效率,大大超过了RTSD的基线。生命周期成本分析表明,与RTSD的0.025/L成本相比,采用黄麻旋转操作(1 rpm)的MTSD配置的单位生产成本降低了52%,达到0.013/L。这些结果强调了设计增强在最大化太阳能蒸馏器生产力方面的有效性,为解决资源有限环境下的淡水短缺问题提供了一个有希望的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Solar Energy Materials and Solar Cells
Solar Energy Materials and Solar Cells 工程技术-材料科学:综合
CiteScore
12.60
自引率
11.60%
发文量
513
审稿时长
47 days
期刊介绍: Solar Energy Materials & Solar Cells is intended as a vehicle for the dissemination of research results on materials science and technology related to photovoltaic, photothermal and photoelectrochemical solar energy conversion. Materials science is taken in the broadest possible sense and encompasses physics, chemistry, optics, materials fabrication and analysis for all types of materials.
期刊最新文献
Editorial Board Performance enhancement of solar stills using evacuated tubes and pulsating heat pipes: A comprehensive review Performance improvement of solar dish collectors with a helical receiver and ternary nanofluid Solid-solid phase change films with intrinsic flexibility and photo-thermal conversion capabilities for human thermal management Scalable cesium/potassium incorporation via CuGa:CsF/KF precursors enables high-efficiency selenized CIGSe solar cells
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1