Enhancing the thermoelectric power factor of metal/tetrahedrite nanocomposites via phase boundary engineering

IF 4.6 3区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Materials Science in Semiconductor Processing Pub Date : 2025-04-07 DOI:10.1016/j.mssp.2025.109548
Oleksandr Dobrozhan , Roman Pshenychnyi , Oleksii Klymov , Maksym Yermakov , Bohdan Boiko , Saїd Agouram , Vicente Muñoz-Sanjosé , Anatoliy Opanasyuk
{"title":"Enhancing the thermoelectric power factor of metal/tetrahedrite nanocomposites via phase boundary engineering","authors":"Oleksandr Dobrozhan ,&nbsp;Roman Pshenychnyi ,&nbsp;Oleksii Klymov ,&nbsp;Maksym Yermakov ,&nbsp;Bohdan Boiko ,&nbsp;Saїd Agouram ,&nbsp;Vicente Muñoz-Sanjosé ,&nbsp;Anatoliy Opanasyuk","doi":"10.1016/j.mssp.2025.109548","DOIUrl":null,"url":null,"abstract":"<div><div>Tetrahedrite is an important thermoelectric material due to its low lattice thermal conductivity (<em>κ</em><sub>l</sub>) and relatively high figure-of-merit (<em>zT</em><sub>max</sub>). Further enhancement of <em>zT</em> parameter is expected through the enhancement of the power factor (<em>PF</em>) by decoupling the interdependence between electrical conductivity (<em>σ</em>) and Seebeck coefficient (<em>S</em>). In order to do that, in this work, we propose to act on the phase boundaries of the tetrahedrite (Cu<sub>12</sub>Sb<sub>4</sub>S<sub>13</sub>) composites with metal (Ag, Ni) nanoinclusions. These composites, with nominal metal compositions of <em>x</em> = (0.0, 0.5, 1.0, 2.0, 4.0) wt. %, were synthesized by a solution-based bottom–up approach. The structure and microstructure of the Cu<sub>12</sub>Sb<sub>4</sub>S<sub>13</sub>–[Ag, Ni] composites were characterized using X-ray diffraction, scanning electron microscopy, high-resolution transmission electron microscopy, and energy dispersive X-ray analysis. The charge carrier transport and its scattering mechanisms were investigated by examining the <em>σ</em>–<em>T</em> and <em>S</em>–<em>T</em> dependencies, followed by calculations of the maximum power factor (<em>PF</em><sub>max</sub>), average power factor (<em>PF</em><sub>avg</sub>), electronic thermal conductivity (<em>κ</em><sub>e</sub>), weighted mobility (<em>μ</em><sub>w</sub>), potential energy barrier (<em>E</em><sub>b</sub>), and electronic quality factor (<em>B</em><sub>E</sub>). In Ag-based composites, the <em>PF</em><sub>avg</sub> improved in respect to the tetrahedrite matrix by ∼20 % in the temperature range of 298–413 K at <em>x</em><sub>Ag</sub> = 0.5 and 1.0 wt % due to the charge carrier filtering through Schottky barriers at the Ag/Cu<sub>12</sub>Sb<sub>4</sub>S<sub>13</sub> interfaces. In Ni-based composites, the <em>PF</em><sub>avg</sub> increased by ∼15 % in the same temperature range for <em>x</em><sub>Ni</sub> = 0.5 wt % as a result of the charge carrier accumulation (modulation doping) facilitated by Ohmic barriers at the Ni/Cu<sub>12</sub>Sb<sub>4</sub>S<sub>13</sub> interfaces.</div></div>","PeriodicalId":18240,"journal":{"name":"Materials Science in Semiconductor Processing","volume":"194 ","pages":"Article 109548"},"PeriodicalIF":4.6000,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science in Semiconductor Processing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1369800125002859","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Tetrahedrite is an important thermoelectric material due to its low lattice thermal conductivity (κl) and relatively high figure-of-merit (zTmax). Further enhancement of zT parameter is expected through the enhancement of the power factor (PF) by decoupling the interdependence between electrical conductivity (σ) and Seebeck coefficient (S). In order to do that, in this work, we propose to act on the phase boundaries of the tetrahedrite (Cu12Sb4S13) composites with metal (Ag, Ni) nanoinclusions. These composites, with nominal metal compositions of x = (0.0, 0.5, 1.0, 2.0, 4.0) wt. %, were synthesized by a solution-based bottom–up approach. The structure and microstructure of the Cu12Sb4S13–[Ag, Ni] composites were characterized using X-ray diffraction, scanning electron microscopy, high-resolution transmission electron microscopy, and energy dispersive X-ray analysis. The charge carrier transport and its scattering mechanisms were investigated by examining the σT and ST dependencies, followed by calculations of the maximum power factor (PFmax), average power factor (PFavg), electronic thermal conductivity (κe), weighted mobility (μw), potential energy barrier (Eb), and electronic quality factor (BE). In Ag-based composites, the PFavg improved in respect to the tetrahedrite matrix by ∼20 % in the temperature range of 298–413 K at xAg = 0.5 and 1.0 wt % due to the charge carrier filtering through Schottky barriers at the Ag/Cu12Sb4S13 interfaces. In Ni-based composites, the PFavg increased by ∼15 % in the same temperature range for xNi = 0.5 wt % as a result of the charge carrier accumulation (modulation doping) facilitated by Ohmic barriers at the Ni/Cu12Sb4S13 interfaces.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过相界工程提高金属/四面体纳米复合材料的热电功率因数
由于四面体晶格导热系数(κl)低,优点系数(zTmax)较高,是一种重要的热电材料。进一步提高zT参数有望通过解耦电导率(σ)和塞贝克系数(S)之间的相互依赖关系来提高功率因数(PF)。为了做到这一点,在这项工作中,我们建议对含有金属(Ag, Ni)纳米夹杂物的四面体(Cu12Sb4S13)复合材料的相界起作用。这些复合材料的标称金属成分为x = (0.0, 0.5, 1.0, 2.0, 4.0) wt. %,通过基于溶液的自下而上方法合成。采用x射线衍射、扫描电镜、高分辨率透射电镜和能量色散x射线分析对Cu12Sb4S13 - [Ag, Ni]复合材料的结构和微观结构进行了表征。通过考察σ-T和S-T的依赖关系,计算最大功率因数(PFmax)、平均功率因数(PFavg)、电子导热系数(κe)、加权迁移率(μw)、势能势垒(Eb)和电子质量因数(BE),研究了载流子输运及其散射机制。在Ag基复合材料中,当xAg = 0.5和1.0 wt %时,在298-413 K的温度范围内,由于Ag/Cu12Sb4S13界面上的电荷载流子通过肖特基势垒过滤,PFavg相对于四面体基体的性能提高了约20%。在Ni基复合材料中,当xNi = 0.5 wt %时,由于Ni/Cu12Sb4S13界面上的欧姆势垒促进了载流子积累(调制掺杂),PFavg在相同温度范围内增加了~ 15%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Materials Science in Semiconductor Processing
Materials Science in Semiconductor Processing 工程技术-材料科学:综合
CiteScore
8.00
自引率
4.90%
发文量
780
审稿时长
42 days
期刊介绍: Materials Science in Semiconductor Processing provides a unique forum for the discussion of novel processing, applications and theoretical studies of functional materials and devices for (opto)electronics, sensors, detectors, biotechnology and green energy. Each issue will aim to provide a snapshot of current insights, new achievements, breakthroughs and future trends in such diverse fields as microelectronics, energy conversion and storage, communications, biotechnology, (photo)catalysis, nano- and thin-film technology, hybrid and composite materials, chemical processing, vapor-phase deposition, device fabrication, and modelling, which are the backbone of advanced semiconductor processing and applications. Coverage will include: advanced lithography for submicron devices; etching and related topics; ion implantation; damage evolution and related issues; plasma and thermal CVD; rapid thermal processing; advanced metallization and interconnect schemes; thin dielectric layers, oxidation; sol-gel processing; chemical bath and (electro)chemical deposition; compound semiconductor processing; new non-oxide materials and their applications; (macro)molecular and hybrid materials; molecular dynamics, ab-initio methods, Monte Carlo, etc.; new materials and processes for discrete and integrated circuits; magnetic materials and spintronics; heterostructures and quantum devices; engineering of the electrical and optical properties of semiconductors; crystal growth mechanisms; reliability, defect density, intrinsic impurities and defects.
期刊最新文献
Strain induced improvement and consistency in thermoelectric performance of Mg and In co-doped LiCaB half-Heusler alloy Ilmenite-derived sub-micron aggregates of Li4Ti5O12 nanocrystallites for lithium-ion battery anodes How the absorber thickness affects the electrical and structural properties of Sb2Se3 solar cells Development of a high-voltage cascaded SiC MOSFET dynamic reverse bias testing power supply using separate drive and single-channel signal tree synchronization control Quartz tuning forks as versatile sensing platforms: A review on design, optimization, and hybrid integration
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1