Low-Threshold and Ultrastable Amplified Spontaneous Emission from CsPbBr3@Glass via Glass Network Modulation

IF 16 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY ACS Nano Pub Date : 2025-04-07 DOI:10.1021/acsnano.5c01653
Ruidan Zhang, Zhehong Zhou, Xueyang Li, Tao Pang, Tong Song, Haijun Wu, Qingqing Liao, Zhibin Wang, Feng Huang, Kaifeng Wu, Daqin Chen
{"title":"Low-Threshold and Ultrastable Amplified Spontaneous Emission from CsPbBr3@Glass via Glass Network Modulation","authors":"Ruidan Zhang, Zhehong Zhou, Xueyang Li, Tao Pang, Tong Song, Haijun Wu, Qingqing Liao, Zhibin Wang, Feng Huang, Kaifeng Wu, Daqin Chen","doi":"10.1021/acsnano.5c01653","DOIUrl":null,"url":null,"abstract":"Inorganic lead halide perovskite quantum dot (QD)-embedded glasses with exceptional optical properties and stability are promising optical gain media for laser applications, but their amplified spontaneous emission (ASE) typically occurs at high pumping thresholds. Here, we report a glass network modulation strategy for low-threshold ASE from CsPbBr<sub>3</sub>@glass. By adding ZrO<sub>2</sub> to enhance the glass network polymerization, high-quality and compact growth of QDs inside glass is promoted rather than uncontrolled self-crystallization. Transient absorption measurements reveal that this method reduces carrier trapping, inhibits biexciton Auger recombination, and accelerates hot exciton cooling, enabling efficient population inversion. Consequently, the CsPbBr<sub>3</sub>@glass exhibits a record-low ASE threshold of 54.5 μ J cm<sup>–2</sup> and a high net modal gain coefficient of 394.4 cm<sup>–1</sup> under femtosecond pulse excitation, together with quasi-continuous ASE realized using nanosecond laser pumping. Notably, our CsPbBr<sub>3</sub>@glass is orders of magnitude more stable than their colloidal counterparts for ASE under identical excitation conditions. This study underscores the potential for developing high-performance lasers using glass-protected perovskite QDs.","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"86 1","pages":""},"PeriodicalIF":16.0000,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.5c01653","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Inorganic lead halide perovskite quantum dot (QD)-embedded glasses with exceptional optical properties and stability are promising optical gain media for laser applications, but their amplified spontaneous emission (ASE) typically occurs at high pumping thresholds. Here, we report a glass network modulation strategy for low-threshold ASE from CsPbBr3@glass. By adding ZrO2 to enhance the glass network polymerization, high-quality and compact growth of QDs inside glass is promoted rather than uncontrolled self-crystallization. Transient absorption measurements reveal that this method reduces carrier trapping, inhibits biexciton Auger recombination, and accelerates hot exciton cooling, enabling efficient population inversion. Consequently, the CsPbBr3@glass exhibits a record-low ASE threshold of 54.5 μ J cm–2 and a high net modal gain coefficient of 394.4 cm–1 under femtosecond pulse excitation, together with quasi-continuous ASE realized using nanosecond laser pumping. Notably, our CsPbBr3@glass is orders of magnitude more stable than their colloidal counterparts for ASE under identical excitation conditions. This study underscores the potential for developing high-performance lasers using glass-protected perovskite QDs.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过玻璃网络调制CsPbBr3@Glass的低阈值和超稳定放大自发辐射
无机卤化铅钙钛矿量子点(QD)嵌入玻璃具有优异的光学性能和稳定性,是激光应用中很有前途的光学增益介质,但其放大自发发射(ASE)通常发生在高泵浦阈值下。在这里,我们报告了来自CsPbBr3@glass的低阈值ASE的玻璃网络调制策略。通过添加ZrO2来增强玻璃网络聚合,促进玻璃内部量子点的高质量和紧凑生长,而不是不受控制的自结晶。瞬态吸收测量表明,该方法减少了载流子捕获,抑制了双激子俄歇复合,加速了热激子冷却,实现了有效的粒子数反转。结果表明,在飞秒脉冲激励下,CsPbBr3@glass具有54.5 μ J cm-2的低ASE阈值和394.4 cm-1的高净模态增益系数,并且利用纳秒激光泵浦实现了准连续ASE。值得注意的是,在相同的激发条件下,我们的CsPbBr3@glass比它们的胶体对应物更稳定。这项研究强调了利用玻璃保护的钙钛矿量子点开发高性能激光器的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
期刊最新文献
van der Waals Engineering for Discrete Control of Homogeneous and Inhomogeneous Exciton Broadening in Monolayer 2D Semiconductors Direct Observation of Ultrafast Defect-Bound and Free Exciton Dynamics in Defect-Engineered WS2 Monolayers Full-Process Proton Management Unlocks Long-Life Aqueous Zinc-Metal Batteries Controlling Radical Pathways via Valence Engineering of Rh/TiO2 for Selective Jet Fuel Synthesis from Biomass Rigid Graphene Nanoribbons Enable Efficient Near-Infrared Room-Temperature Phosphorescence Emission
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1