Interpretable Machine Learning for Evaluating Nanogenerators’ Structural Design

IF 16 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY ACS Nano Pub Date : 2025-04-07 DOI:10.1021/acsnano.5c02525
Chi Han, Mingyu Jin, Fuying Dong, Pengchong Xu, Xinnian Jiang, Sheling T. Cai, Yuanwen Jiang, Yongfeng Zhang, Yin Fang, Simiao Niu
{"title":"Interpretable Machine Learning for Evaluating Nanogenerators’ Structural Design","authors":"Chi Han, Mingyu Jin, Fuying Dong, Pengchong Xu, Xinnian Jiang, Sheling T. Cai, Yuanwen Jiang, Yongfeng Zhang, Yin Fang, Simiao Niu","doi":"10.1021/acsnano.5c02525","DOIUrl":null,"url":null,"abstract":"The limited battery life in modern mobile, wearable, and implantable electronics critically constrains their operational longevity and continuous use. Consequently, as a self-powered technology, triboelectric nanogenerators (TENGs) have emerged as a promising solution to this. Traditional approaches for evaluating TENG structural design typically require manual, repetitive, time-consuming, and high-cost finite element modeling or experiments. To overcome this bottleneck, we developed a fully automated platform that leverages machine learning (ML) techniques. Our framework contains an artificial neuron network-based surrogate model that can provide accurate and reliable performance predictions for any structural parameters and a TreeSHAP interpretable ML model that can generate precise global and local insights for TENG structural parameters. Our platform shows broad adaptability to multiple TENG structures. In summary, our platform is an integrated platform that utilizes interpretable ML techniques to solve the complex multidimensional TENG structural evaluation problem, marking a significant advancement in TENG design and supporting sustainable energy solutions in mobile electronics.","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"37 1","pages":""},"PeriodicalIF":16.0000,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.5c02525","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The limited battery life in modern mobile, wearable, and implantable electronics critically constrains their operational longevity and continuous use. Consequently, as a self-powered technology, triboelectric nanogenerators (TENGs) have emerged as a promising solution to this. Traditional approaches for evaluating TENG structural design typically require manual, repetitive, time-consuming, and high-cost finite element modeling or experiments. To overcome this bottleneck, we developed a fully automated platform that leverages machine learning (ML) techniques. Our framework contains an artificial neuron network-based surrogate model that can provide accurate and reliable performance predictions for any structural parameters and a TreeSHAP interpretable ML model that can generate precise global and local insights for TENG structural parameters. Our platform shows broad adaptability to multiple TENG structures. In summary, our platform is an integrated platform that utilizes interpretable ML techniques to solve the complex multidimensional TENG structural evaluation problem, marking a significant advancement in TENG design and supporting sustainable energy solutions in mobile electronics.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
评价纳米发电机结构设计的可解释机器学习
现代移动、可穿戴和植入式电子产品中有限的电池寿命严重限制了它们的使用寿命和连续使用。因此,作为一种自供电技术,摩擦电纳米发电机(TENGs)已经成为解决这一问题的一个有希望的解决方案。评估TENG结构设计的传统方法通常需要手动、重复、耗时和高成本的有限元建模或实验。为了克服这一瓶颈,我们开发了一个利用机器学习(ML)技术的全自动平台。我们的框架包含一个基于人工神经元网络的代理模型,可以为任何结构参数提供准确可靠的性能预测,以及一个TreeSHAP可解释的ML模型,可以为TENG结构参数生成精确的全局和局部见解。我们的平台对多种TENG结构具有广泛的适应性。总之,我们的平台是一个集成平台,利用可解释的ML技术来解决复杂的多维TENG结构评估问题,标志着TENG设计的重大进步,并支持移动电子领域的可持续能源解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
期刊最新文献
van der Waals Engineering for Discrete Control of Homogeneous and Inhomogeneous Exciton Broadening in Monolayer 2D Semiconductors Direct Observation of Ultrafast Defect-Bound and Free Exciton Dynamics in Defect-Engineered WS2 Monolayers Full-Process Proton Management Unlocks Long-Life Aqueous Zinc-Metal Batteries Controlling Radical Pathways via Valence Engineering of Rh/TiO2 for Selective Jet Fuel Synthesis from Biomass Rigid Graphene Nanoribbons Enable Efficient Near-Infrared Room-Temperature Phosphorescence Emission
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1