Acceptor Crystallinity Engineering Enables >20% Efficiency Binary Organic Solar Cells with 83.0% Fill Factor

IF 26.8 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Advanced Materials Pub Date : 2025-04-07 DOI:10.1002/adma.202501243
Jiawei Deng, Wenhao Li, Rui Zeng, Jiali Song, Senke Tan, Lixuan Kan, Zhao Qin, Yan Zhao, Feng Liu, Yanming Sun
{"title":"Acceptor Crystallinity Engineering Enables >20% Efficiency Binary Organic Solar Cells with 83.0% Fill Factor","authors":"Jiawei Deng,&nbsp;Wenhao Li,&nbsp;Rui Zeng,&nbsp;Jiali Song,&nbsp;Senke Tan,&nbsp;Lixuan Kan,&nbsp;Zhao Qin,&nbsp;Yan Zhao,&nbsp;Feng Liu,&nbsp;Yanming Sun","doi":"10.1002/adma.202501243","DOIUrl":null,"url":null,"abstract":"<p>For spontaneously crystallized organic photovoltaic materials, morphology optimization remains a challenge due to the disparity in crystallinity between the donor and acceptor components. Imperfections in the crystalline phases result in significant trap-assisted recombination, which emerges as a critical factor limiting the fill factor (FF) of organic solar cells (OSCs). Herein, a method is introduced for precise regulation of the acceptor crystallinity, utilizing a novel upper-layer acceptor processing solvent, trichloroethylene (TCE), to improve the state and vertical morphology of the active layer. The TCE solvent synergistically optimizes intermolecular interactions among acceptor molecules and balances the film-forming process, thereby increasing the proportion of transport phases and forming high-speed channels for electron transport, which subsequently reduces trap-assisted charge recombination. As a result, the photovoltaic efficiency of binary organic solar cells reaches 20.05%. More importantly, an unprecedented FF of 83.0% is obtained, representing the highest FF value for OSCs. This facile and effective approach offers a promising means for constructing efficient charge transport networks and fabricating high-efficiency and morphologically stable OSCs.</p>","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"37 24","pages":""},"PeriodicalIF":26.8000,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/adma.202501243","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

For spontaneously crystallized organic photovoltaic materials, morphology optimization remains a challenge due to the disparity in crystallinity between the donor and acceptor components. Imperfections in the crystalline phases result in significant trap-assisted recombination, which emerges as a critical factor limiting the fill factor (FF) of organic solar cells (OSCs). Herein, a method is introduced for precise regulation of the acceptor crystallinity, utilizing a novel upper-layer acceptor processing solvent, trichloroethylene (TCE), to improve the state and vertical morphology of the active layer. The TCE solvent synergistically optimizes intermolecular interactions among acceptor molecules and balances the film-forming process, thereby increasing the proportion of transport phases and forming high-speed channels for electron transport, which subsequently reduces trap-assisted charge recombination. As a result, the photovoltaic efficiency of binary organic solar cells reaches 20.05%. More importantly, an unprecedented FF of 83.0% is obtained, representing the highest FF value for OSCs. This facile and effective approach offers a promising means for constructing efficient charge transport networks and fabricating high-efficiency and morphologically stable OSCs.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
受体结晶度工程实现了>20%效率、83.0%填充系数的二元有机太阳能电池
对于自发结晶的有机光伏材料而言,由于供体和受体成分之间的结晶度差异,形态优化仍然是一项挑战。结晶相的不完美会导致严重的陷阱辅助重组,成为限制有机太阳能电池填充因子(FF)的关键因素。本文介绍了一种精确调节受体结晶度的方法,利用新型上层受体加工溶剂三氯乙烯(TCE)来改善活性层的状态和垂直形态。TCE 溶剂能协同优化受体分子间的相互作用,平衡成膜过程,从而增加传输相的比例,形成电子传输的高速通道,进而减少陷阱辅助电荷重组。因此,二元有机太阳能电池的光电效率达到了 20.05%。更重要的是,获得了史无前例的 83.0% 的 FF 值,代表了 OSCs 的最高 FF 值。这种简便有效的方法为构建高效的电荷传输网络和制造高效且形态稳定的 OSCs 提供了一种前景广阔的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
期刊最新文献
Nanoconfined Deposition Enables High-Energy-Density Mg Metal Batteries. Suppressing Exciton-Polaron Annihilation in a D-π-A Organic Semiconductor Toward Electrically Pumped Lasing. van der Waals Lamination for Integrating Metal Halide in Perovskite Optoelectronic Devices. Electrochemical Carbon Dioxide Reduction to Methanol on Copper-Based Catalysts: Mechanistic Insights and Industrial Prospects. Sculpting the Future of Bone: The Evolution of Absorbable Materials in Orthopedics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1