‘Chimes of resilience’: what makes forest trees genetically resilient?

IF 8.1 1区 生物学 Q1 PLANT SCIENCES New Phytologist Pub Date : 2025-04-07 DOI:10.1111/nph.70108
Antoine Kremer, Jun Chen, Martin Lascoux
{"title":"‘Chimes of resilience’: what makes forest trees genetically resilient?","authors":"Antoine Kremer,&nbsp;Jun Chen,&nbsp;Martin Lascoux","doi":"10.1111/nph.70108","DOIUrl":null,"url":null,"abstract":"<p>Forest trees are foundation species of many ecosystems and are challenged by global environmental changes. We assemble genetic facts and arguments supporting or undermining resilient responses of forest trees to those changes. Genetic resilience is understood here as the capacity of a species to restore its adaptive potential following environmental changes and disturbances. Importantly, the data come primarily from European temperate tree species with large distributions and consider only marginally species with small distributions. We first examine historical trajectories of trees during repeated climatic changes. Species that survived the Pliocene–Pleistocene transition and underwent the oscillations of glacial and interglacial periods were equipped with life history traits enhancing persistence and resilience. Evidence of their resilience also comes from the maintenance of large effective population sizes across time and rapid microevolutionary responses to recent climatic events. We then review genetic mechanisms and attributes shaping resilient responses. Usually, invoked constraints to resilience, such as genetic load or generation time and overlap, have limited consequences or are offset by positive impacts. Conversely, genetic plasticity, gene flow, introgression, genetic architecture of fitness-related traits and demographic dynamics strengthen resilience by accelerating adaptive responses. Finally, we address the limitations of this review and highlight critical research gaps.</p>","PeriodicalId":214,"journal":{"name":"New Phytologist","volume":"246 5","pages":"1934-1951"},"PeriodicalIF":8.1000,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/nph.70108","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Phytologist","FirstCategoryId":"99","ListUrlMain":"https://nph.onlinelibrary.wiley.com/doi/10.1111/nph.70108","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Forest trees are foundation species of many ecosystems and are challenged by global environmental changes. We assemble genetic facts and arguments supporting or undermining resilient responses of forest trees to those changes. Genetic resilience is understood here as the capacity of a species to restore its adaptive potential following environmental changes and disturbances. Importantly, the data come primarily from European temperate tree species with large distributions and consider only marginally species with small distributions. We first examine historical trajectories of trees during repeated climatic changes. Species that survived the Pliocene–Pleistocene transition and underwent the oscillations of glacial and interglacial periods were equipped with life history traits enhancing persistence and resilience. Evidence of their resilience also comes from the maintenance of large effective population sizes across time and rapid microevolutionary responses to recent climatic events. We then review genetic mechanisms and attributes shaping resilient responses. Usually, invoked constraints to resilience, such as genetic load or generation time and overlap, have limited consequences or are offset by positive impacts. Conversely, genetic plasticity, gene flow, introgression, genetic architecture of fitness-related traits and demographic dynamics strengthen resilience by accelerating adaptive responses. Finally, we address the limitations of this review and highlight critical research gaps.

Abstract Image

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
“恢复力的钟声”:是什么让森林树木在基因上具有恢复力?
森林树木是许多生态系统的基础物种,受到全球环境变化的挑战。我们收集了支持或破坏森林树木对这些变化的弹性反应的遗传事实和论据。遗传弹性在这里被理解为一个物种在环境变化和干扰后恢复其适应潜力的能力。重要的是,数据主要来自分布大的欧洲温带树种,只考虑分布小的边缘树种。我们首先研究了树木在反复气候变化期间的历史轨迹。在上新世-更新世过渡时期幸存下来并经历冰期和间冰期振荡的物种具有增强持久性和恢复力的生活史特征。它们恢复力的证据还来自于它们在一段时间内保持着庞大的有效种群规模,以及对近期气候事件的快速微进化反应。然后我们回顾了形成弹性反应的遗传机制和属性。通常,对弹性的调用约束,如遗传负荷或产生时间和重叠,具有有限的后果或被积极的影响所抵消。相反,遗传可塑性、基因流、基因渗入、适合度相关性状的遗传结构和人口动态通过加速适应反应来增强适应力。最后,我们指出了本综述的局限性,并强调了关键的研究空白。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
New Phytologist
New Phytologist 生物-植物科学
自引率
5.30%
发文量
728
期刊介绍: New Phytologist is an international electronic journal published 24 times a year. It is owned by the New Phytologist Foundation, a non-profit-making charitable organization dedicated to promoting plant science. The journal publishes excellent, novel, rigorous, and timely research and scholarship in plant science and its applications. The articles cover topics in five sections: Physiology & Development, Environment, Interaction, Evolution, and Transformative Plant Biotechnology. These sections encompass intracellular processes, global environmental change, and encourage cross-disciplinary approaches. The journal recognizes the use of techniques from molecular and cell biology, functional genomics, modeling, and system-based approaches in plant science. Abstracting and Indexing Information for New Phytologist includes Academic Search, AgBiotech News & Information, Agroforestry Abstracts, Biochemistry & Biophysics Citation Index, Botanical Pesticides, CAB Abstracts®, Environment Index, Global Health, and Plant Breeding Abstracts, and others.
期刊最新文献
Efficient and accurate prime editing system in plants. Corrigendum to 'Off-target drift of the herbicide dicamba disrupts plant-pollinator interactions via novel pathways'. Parallel evolution of plant alkaloid biosynthesis from bacterial‐like decarboxylases ZmMPK5-mediated ZmOCL1 phosphorylation positively regulates drought tolerance by promoting the induction of ZmDHN2 in maize. Fungal ecology in the age of 'omics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1