Predicting Protein Corona Formation on Polylactic Acid Microplastics Pre- and Post-Photoaging: The Importance of Optimal Imputation Methods

IF 8.8 2区 环境科学与生态学 Q1 ENGINEERING, ENVIRONMENTAL Environmental Science & Technology Letters Environ. Pub Date : 2025-03-04 DOI:10.1021/acs.estlett.5c00183
Xuri Wu, Liping Huang, Lina Zhou, Yan Fang and Feng Tan*, 
{"title":"Predicting Protein Corona Formation on Polylactic Acid Microplastics Pre- and Post-Photoaging: The Importance of Optimal Imputation Methods","authors":"Xuri Wu,&nbsp;Liping Huang,&nbsp;Lina Zhou,&nbsp;Yan Fang and Feng Tan*,&nbsp;","doi":"10.1021/acs.estlett.5c00183","DOIUrl":null,"url":null,"abstract":"<p >Micro-nanoplastics (MNPs) enter biological systems, forming a protein corona (PC) by adsorbing proteins from bodily fluids, influencing their biological effects. Mass spectrometry-based proteomics characterizes PC composition, and recent advances have leveraged protein amino acid sequence-derived features to predict PC formation using a supervised random forest (RF) classifier. However, mass spectrometry often generates substantial missing values (MVs), which may hinder the model’s predictive performance and the understanding of protein–particle interactions. This study assessed the impact of 20 imputation methods on RF classifier performance in predicting human plasma PC formation on polylactic acid (PLA) and photoaged PLA microplastics (MPs), considering their rising ecological and health concerns. The results showed that five left-censored imputation methods (Zero, Half-min, Min, QRILC, GSimp) achieved the best performance, with high accuracy (0.80–0.82), AUC (0.78–0.84), precision (0.78–0.80), and recall (0.97–0.98). Protein spatial features, including secondary sheet structure (negative) and absolute solvent-accessible area (positive), were identified as key factors influencing protein adsorption onto MPs. Additionally, UV aging increased the importance ranking of features <i>frac_aa_S</i> and <i>fraction_exposed_exposed_S</i>, highlighting altered protein–MPs interactions, likely through hydrogen bonding and electrostatic forces. This study demonstrates the potential of left-censored imputation methods in enhancing RF classifier performance for predicting PC formation.</p>","PeriodicalId":37,"journal":{"name":"Environmental Science & Technology Letters Environ.","volume":"12 4","pages":"413–418 413–418"},"PeriodicalIF":8.8000,"publicationDate":"2025-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Science & Technology Letters Environ.","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.estlett.5c00183","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Micro-nanoplastics (MNPs) enter biological systems, forming a protein corona (PC) by adsorbing proteins from bodily fluids, influencing their biological effects. Mass spectrometry-based proteomics characterizes PC composition, and recent advances have leveraged protein amino acid sequence-derived features to predict PC formation using a supervised random forest (RF) classifier. However, mass spectrometry often generates substantial missing values (MVs), which may hinder the model’s predictive performance and the understanding of protein–particle interactions. This study assessed the impact of 20 imputation methods on RF classifier performance in predicting human plasma PC formation on polylactic acid (PLA) and photoaged PLA microplastics (MPs), considering their rising ecological and health concerns. The results showed that five left-censored imputation methods (Zero, Half-min, Min, QRILC, GSimp) achieved the best performance, with high accuracy (0.80–0.82), AUC (0.78–0.84), precision (0.78–0.80), and recall (0.97–0.98). Protein spatial features, including secondary sheet structure (negative) and absolute solvent-accessible area (positive), were identified as key factors influencing protein adsorption onto MPs. Additionally, UV aging increased the importance ranking of features frac_aa_S and fraction_exposed_exposed_S, highlighting altered protein–MPs interactions, likely through hydrogen bonding and electrostatic forces. This study demonstrates the potential of left-censored imputation methods in enhancing RF classifier performance for predicting PC formation.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
聚乳酸微塑料光老化前后蛋白电晕形成的预测:优化计算方法的重要性
微纳米塑料(MNPs)进入生物系统,通过吸附体液中的蛋白质形成蛋白质冠(PC),影响其生物效应。基于质谱的蛋白质组学表征了PC的组成,最近的进展是利用蛋白质氨基酸序列衍生的特征来预测PC的形成,使用监督随机森林(RF)分类器。然而,质谱法通常会产生大量的缺失值(mv),这可能会阻碍模型的预测性能和对蛋白质-颗粒相互作用的理解。考虑到聚乳酸(PLA)和光化PLA微塑料(MPs)的生态和健康问题,本研究评估了20种输入方法对射频分类器性能的影响,以预测人类血浆PC形成。结果表明,0、Half-min、Min、QRILC、GSimp 5种左删检方法具有较高的正确率(0.80 ~ 0.82)、AUC(0.78 ~ 0.84)、精密度(0.78 ~ 0.80)和召回率(0.97 ~ 0.98)。蛋白质的空间特征,包括次级薄片结构(负)和绝对溶剂可及面积(正),被认为是影响蛋白质在MPs上吸附的关键因素。此外,紫外线老化增加了特征frac_aa_S和fraction_exposed_exposed_S的重要性排名,突出了蛋白质- mps相互作用的改变,可能是通过氢键和静电力。本研究证明了左删检输入方法在提高射频分类器预测PC形成的性能方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Environmental Science & Technology Letters Environ.
Environmental Science & Technology Letters Environ. ENGINEERING, ENVIRONMENTALENVIRONMENTAL SC-ENVIRONMENTAL SCIENCES
CiteScore
17.90
自引率
3.70%
发文量
163
期刊介绍: Environmental Science & Technology Letters serves as an international forum for brief communications on experimental or theoretical results of exceptional timeliness in all aspects of environmental science, both pure and applied. Published as soon as accepted, these communications are summarized in monthly issues. Additionally, the journal features short reviews on emerging topics in environmental science and technology.
期刊最新文献
Issue Editorial Masthead Issue Publication Information Our Selections for the Best ES&T Letters Papers in 2024 Filter-PUF Tandem Exhaust Sampling Corrects Underestimation of Vehicular Nitrated Phenols Changes in PM2.5-Attributable Mortality in the US by Sector, 2002–2019
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1