Manifold-based multi-branch transfer learning for MI-EEG decoding

IF 5.6 1区 数学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS Chaos Solitons & Fractals Pub Date : 2025-04-08 DOI:10.1016/j.chaos.2025.116326
Haoyu Li , Jianpeng An , Rongshun Juan , Tina P. Benko , Matjaž Perc , Weidong Dang , Zhongke Gao
{"title":"Manifold-based multi-branch transfer learning for MI-EEG decoding","authors":"Haoyu Li ,&nbsp;Jianpeng An ,&nbsp;Rongshun Juan ,&nbsp;Tina P. Benko ,&nbsp;Matjaž Perc ,&nbsp;Weidong Dang ,&nbsp;Zhongke Gao","doi":"10.1016/j.chaos.2025.116326","DOIUrl":null,"url":null,"abstract":"<div><div>We present a novel decoding approach for motor imagery electroencephalograms (MI-EEG) in Brain-Computer Interface (BCI) systems, aiming to advance neurorehabilitation and human–computer interaction. However, due to the non-stationary properties and low signal-to-noise ratio of MI-EEG, as well as significant individual variability, achieving accurate cross-subject decoding remains a challenge for real-world applications. To address this, we propose a manifold-based data processing method combined with a multi-branch network and enhanced by transfer learning to improve cross-subject performance. First, we identify the frequency bands relevant to motor imagery tasks and align multi-band data on the Symmetric Positive Definite (SPD) manifold using the Log-Euclidean Metric (LEM), including both full-band data and motor imagery-specific frequency bands. We then reconstruct these data from the manifold using a low-rank representation (LRP). Finally, we use a multi-branch network to extract and fuse deep features from the various frequency bands. We validated our approach on the BCI Competition IV-2a dataset and our JS-MI dataset, demonstrating that our method excels in cross-subject MI-EEG decoding tasks, with average classification accuracies of 74.55% and 71.94%, respectively. Our findings highlight the potential of this approach to improve BCI applications and facilitate more effective neurorehabilitation and human–computer interaction through enhanced MI-EEG decoding.</div></div>","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":"196 ","pages":"Article 116326"},"PeriodicalIF":5.6000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos Solitons & Fractals","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S096007792500339X","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

We present a novel decoding approach for motor imagery electroencephalograms (MI-EEG) in Brain-Computer Interface (BCI) systems, aiming to advance neurorehabilitation and human–computer interaction. However, due to the non-stationary properties and low signal-to-noise ratio of MI-EEG, as well as significant individual variability, achieving accurate cross-subject decoding remains a challenge for real-world applications. To address this, we propose a manifold-based data processing method combined with a multi-branch network and enhanced by transfer learning to improve cross-subject performance. First, we identify the frequency bands relevant to motor imagery tasks and align multi-band data on the Symmetric Positive Definite (SPD) manifold using the Log-Euclidean Metric (LEM), including both full-band data and motor imagery-specific frequency bands. We then reconstruct these data from the manifold using a low-rank representation (LRP). Finally, we use a multi-branch network to extract and fuse deep features from the various frequency bands. We validated our approach on the BCI Competition IV-2a dataset and our JS-MI dataset, demonstrating that our method excels in cross-subject MI-EEG decoding tasks, with average classification accuracies of 74.55% and 71.94%, respectively. Our findings highlight the potential of this approach to improve BCI applications and facilitate more effective neurorehabilitation and human–computer interaction through enhanced MI-EEG decoding.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于 MI-EEG 解码的基于 Manifold 的多分支转移学习
我们提出了一种新的脑机接口(BCI)系统中运动图像脑电图(MI-EEG)解码方法,旨在促进神经康复和人机交互。然而,由于MI-EEG的非平稳特性和低信噪比,以及显著的个体可变性,实现准确的跨主体解码仍然是现实应用中的一个挑战。为了解决这个问题,我们提出了一种基于流形的数据处理方法,结合多分支网络,并通过迁移学习增强,以提高跨学科性能。首先,我们确定与运动成像任务相关的频段,并使用对数欧几里得度量(LEM)在对称正定(SPD)歧管上对齐多频段数据,包括全频段数据和运动图像特定频段。然后,我们使用低秩表示(LRP)从流形重构这些数据。最后,我们利用多分支网络从各个频带提取和融合深度特征。我们在BCI Competition IV-2a数据集和JS-MI数据集上验证了我们的方法,表明我们的方法在跨主题MI-EEG解码任务中表现出色,平均分类准确率分别为74.55%和71.94%。我们的研究结果强调了这种方法的潜力,通过增强MI-EEG解码来改善脑机接口的应用,促进更有效的神经康复和人机交互。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Chaos Solitons & Fractals
Chaos Solitons & Fractals 物理-数学跨学科应用
CiteScore
13.20
自引率
10.30%
发文量
1087
审稿时长
9 months
期刊介绍: Chaos, Solitons & Fractals strives to establish itself as a premier journal in the interdisciplinary realm of Nonlinear Science, Non-equilibrium, and Complex Phenomena. It welcomes submissions covering a broad spectrum of topics within this field, including dynamics, non-equilibrium processes in physics, chemistry, and geophysics, complex matter and networks, mathematical models, computational biology, applications to quantum and mesoscopic phenomena, fluctuations and random processes, self-organization, and social phenomena.
期刊最新文献
Photomechanical self-oscillation of a bifilar pendulum with liquid crystal elastomeric fiber On the behavior of Linear Dependence, Smaller, and Generalized Alignment Indices in discrete and continuous chaotic systems Hybrid analytical–ANN modeling of ferroconvection with couple stresses under variable gravity fields Finite-time stability analysis for switched systems: MDADT-based trade-off switching approaches Synchronization and control for directed and multiweighted networks with multiple time delays
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1