{"title":"Dynamics of collective information processing for risk encoding in social networks during crises","authors":"Chao Fan , Fangsheng Wu , Ali Mostafavi","doi":"10.1016/j.ijdrr.2025.105451","DOIUrl":null,"url":null,"abstract":"<div><div>Online social networks are increasingly being utilized for collective sense-making and information processing in disasters. However, the underlying mechanisms that shape the dynamics of collective intelligence in online social networks during disasters is not fully understood. To bridge this gap, we examine the mechanisms of collective information processing in human networks during five threat cases including airport power outage, hurricanes, wildfire, and blizzard, considering the temporal and spatial dimensions. Using the 13 MM Twitter data generated by 5 MM online users during these threats, we examined human activities, communication structures and frequency, social influence, information flow, and medium response time in social networks. The results show that the activities and structures are stable in growing networks, which lead to a stable power-law distribution of the social influence in networks. These temporally invariant patterns are not affected by people's memory and ties' strength. In addition, spatially localized communication spikes and global transmission gaps in the networks. The findings could inform about network intervention strategies to enable a healthy and efficient online environment, with potential long-term impact on risk communication and emergency response.</div></div>","PeriodicalId":13915,"journal":{"name":"International journal of disaster risk reduction","volume":"122 ","pages":"Article 105451"},"PeriodicalIF":4.5000,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of disaster risk reduction","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212420925002754","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Online social networks are increasingly being utilized for collective sense-making and information processing in disasters. However, the underlying mechanisms that shape the dynamics of collective intelligence in online social networks during disasters is not fully understood. To bridge this gap, we examine the mechanisms of collective information processing in human networks during five threat cases including airport power outage, hurricanes, wildfire, and blizzard, considering the temporal and spatial dimensions. Using the 13 MM Twitter data generated by 5 MM online users during these threats, we examined human activities, communication structures and frequency, social influence, information flow, and medium response time in social networks. The results show that the activities and structures are stable in growing networks, which lead to a stable power-law distribution of the social influence in networks. These temporally invariant patterns are not affected by people's memory and ties' strength. In addition, spatially localized communication spikes and global transmission gaps in the networks. The findings could inform about network intervention strategies to enable a healthy and efficient online environment, with potential long-term impact on risk communication and emergency response.
期刊介绍:
The International Journal of Disaster Risk Reduction (IJDRR) is the journal for researchers, policymakers and practitioners across diverse disciplines: earth sciences and their implications; environmental sciences; engineering; urban studies; geography; and the social sciences. IJDRR publishes fundamental and applied research, critical reviews, policy papers and case studies with a particular focus on multi-disciplinary research that aims to reduce the impact of natural, technological, social and intentional disasters. IJDRR stimulates exchange of ideas and knowledge transfer on disaster research, mitigation, adaptation, prevention and risk reduction at all geographical scales: local, national and international.
Key topics:-
-multifaceted disaster and cascading disasters
-the development of disaster risk reduction strategies and techniques
-discussion and development of effective warning and educational systems for risk management at all levels
-disasters associated with climate change
-vulnerability analysis and vulnerability trends
-emerging risks
-resilience against disasters.
The journal particularly encourages papers that approach risk from a multi-disciplinary perspective.