Enhancing financial product forecasting accuracy using EMD and feature selection with ensemble models

Q1 Economics, Econometrics and Finance Journal of Open Innovation: Technology, Market, and Complexity Pub Date : 2025-04-04 DOI:10.1016/j.joitmc.2025.100531
Eddy Suprihadi , Nevi Danila , Zaiton Ali
{"title":"Enhancing financial product forecasting accuracy using EMD and feature selection with ensemble models","authors":"Eddy Suprihadi ,&nbsp;Nevi Danila ,&nbsp;Zaiton Ali","doi":"10.1016/j.joitmc.2025.100531","DOIUrl":null,"url":null,"abstract":"<div><div>This study examines the impact of Empirical Mode Decomposition (EMD) and Recursive Feature Elimination (RFE) on the prediction of financial product performance employing several ensemble machine learning models, including Random Forest, XGBoost, LightGBM, AdaBoost, CatBoost, Bagging, and ExtraTrees. The research sample comprises ten diverse financial products such as stocks, indices, cryptocurrencies, and commodities. The findings reveal that the combination of EMD and RFE significantly enhances prediction accuracy, with XGBoost delivering the best results. Although all ensemble models benefited from these preprocessing techniques, XGBoost, Random Forest, and LightGBM consistently outperformed the others. This research underscores the critical role of EMD and RFE in improving the predictive capabilities of machine learning models in the dynamic and complex landscape of financial markets, offering valuable insights for practitioners aiming to enhance forecasting accuracy.</div></div>","PeriodicalId":16678,"journal":{"name":"Journal of Open Innovation: Technology, Market, and Complexity","volume":"11 2","pages":"Article 100531"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Open Innovation: Technology, Market, and Complexity","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2199853125000666","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Economics, Econometrics and Finance","Score":null,"Total":0}
引用次数: 0

Abstract

This study examines the impact of Empirical Mode Decomposition (EMD) and Recursive Feature Elimination (RFE) on the prediction of financial product performance employing several ensemble machine learning models, including Random Forest, XGBoost, LightGBM, AdaBoost, CatBoost, Bagging, and ExtraTrees. The research sample comprises ten diverse financial products such as stocks, indices, cryptocurrencies, and commodities. The findings reveal that the combination of EMD and RFE significantly enhances prediction accuracy, with XGBoost delivering the best results. Although all ensemble models benefited from these preprocessing techniques, XGBoost, Random Forest, and LightGBM consistently outperformed the others. This research underscores the critical role of EMD and RFE in improving the predictive capabilities of machine learning models in the dynamic and complex landscape of financial markets, offering valuable insights for practitioners aiming to enhance forecasting accuracy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用EMD和集成模型的特征选择提高金融产品预测的准确性
本研究采用随机森林(Random Forest)、XGBoost、LightGBM、AdaBoost、CatBoost、Bagging和ExtraTrees等集成机器学习模型,考察了经验模式分解(EMD)和递归特征消除(RFE)对金融产品性能预测的影响。研究样本包括十种不同的金融产品,如股票、指数、加密货币和大宗商品。研究结果表明,EMD和RFE的结合显著提高了预测精度,其中XGBoost提供了最好的结果。尽管所有集成模型都受益于这些预处理技术,但XGBoost、Random Forest和LightGBM的表现始终优于其他模型。本研究强调了EMD和RFE在提高机器学习模型在动态和复杂的金融市场环境中的预测能力方面的关键作用,为旨在提高预测准确性的从业者提供了有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Open Innovation: Technology, Market, and Complexity
Journal of Open Innovation: Technology, Market, and Complexity Economics, Econometrics and Finance-Economics, Econometrics and Finance (all)
CiteScore
11.00
自引率
0.00%
发文量
196
审稿时长
1 day
期刊最新文献
Integrating clean mobility with renewable energy: Techno-economic and environmental feasibility of on-grid hybrid photovoltaic–biogas systems Beyond influencers: Leveraging large language models for dynamic content generation and citizen interaction in environmental campaigns Impact of sustainability uncertainty on the volatility dynamics of digital asset class Reconfiguring Indonesia’s travel ecosystem through the Hybrid STA–CBTA Model: A pathway to inclusive innovation in Tourism 4.0 Validating a scale to measure social innovation capacity in social organizations: An empirical contribution to open innovation research
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1