Lanthanum calcium manganite perovskite coated on porous ceria for enhanced solar thermochemical fuel production

IF 7.5 1区 工程技术 Q2 ENERGY & FUELS Fuel Pub Date : 2025-04-08 DOI:10.1016/j.fuel.2025.135154
Amir Masoud Parvanian , Ehsan Baniasadi , Abdollah Lalpour , Nakisa Lalpour , Stéphane Abanades
{"title":"Lanthanum calcium manganite perovskite coated on porous ceria for enhanced solar thermochemical fuel production","authors":"Amir Masoud Parvanian ,&nbsp;Ehsan Baniasadi ,&nbsp;Abdollah Lalpour ,&nbsp;Nakisa Lalpour ,&nbsp;Stéphane Abanades","doi":"10.1016/j.fuel.2025.135154","DOIUrl":null,"url":null,"abstract":"<div><div>This study explores the enhanced efficiency of solar-driven redox reactions using ceria foams coated with Ca-doped lanthanum manganite (LCM) perovskite, focusing on sustainable fuel production. The effects of substrate pore density (10, 30 ppi) and coating thickness (3 and 6 perovskite layers) were investigated. The LCM perovskite was synthesized and uniformly coated onto porous ceria substrates, as confirmed by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The dual-scale porous structure of ceria enhanced the coating’s effectiveness and reactivity, with coating thicknesses ranging from 75-140 μm (three layers) to 100–400 μm (six layers). Thermogravimetric analysis (TGA) showed superior reduction extents for LCM-coated ceria samples, with O<sub>2</sub> production up to 131 µmol/g, compared to 55 µmol/g for pure ceria. This led to a 20–40 % increase in total fuel production, with CO yields up to 141 µmol/g versus 98 µmol/g for pure ceria. Performance stability for CO<sub>2</sub> and H<sub>2</sub>O splitting was confirmed through fifteen consecutive cycles in a high-temperature solar reactor. Solar thermochemical cycling tests showed that LCM-coated ceria foams produced up to 244 µmol/g CO, with a peak CO production rate of 6.22 mL·min<sup>-1</sup>·g<sup>-1</sup>, during reduction at 1450 °C and oxidation under pure CO<sub>2</sub> below 900 °C. However, pure ceria exhibited faster oxidation kinetics. This research underscores the importance of material design and optimization in improving solar thermochemical processes for large-scale solar fuel production.</div></div>","PeriodicalId":325,"journal":{"name":"Fuel","volume":"396 ","pages":"Article 135154"},"PeriodicalIF":7.5000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fuel","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0016236125008798","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

This study explores the enhanced efficiency of solar-driven redox reactions using ceria foams coated with Ca-doped lanthanum manganite (LCM) perovskite, focusing on sustainable fuel production. The effects of substrate pore density (10, 30 ppi) and coating thickness (3 and 6 perovskite layers) were investigated. The LCM perovskite was synthesized and uniformly coated onto porous ceria substrates, as confirmed by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The dual-scale porous structure of ceria enhanced the coating’s effectiveness and reactivity, with coating thicknesses ranging from 75-140 μm (three layers) to 100–400 μm (six layers). Thermogravimetric analysis (TGA) showed superior reduction extents for LCM-coated ceria samples, with O2 production up to 131 µmol/g, compared to 55 µmol/g for pure ceria. This led to a 20–40 % increase in total fuel production, with CO yields up to 141 µmol/g versus 98 µmol/g for pure ceria. Performance stability for CO2 and H2O splitting was confirmed through fifteen consecutive cycles in a high-temperature solar reactor. Solar thermochemical cycling tests showed that LCM-coated ceria foams produced up to 244 µmol/g CO, with a peak CO production rate of 6.22 mL·min-1·g-1, during reduction at 1450 °C and oxidation under pure CO2 below 900 °C. However, pure ceria exhibited faster oxidation kinetics. This research underscores the importance of material design and optimization in improving solar thermochemical processes for large-scale solar fuel production.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
涂覆在多孔铈上的镧钙锰过氧化物用于增强太阳能热化学燃料生产
本研究探讨了利用掺钙锰酸镧(LCM)钙钛矿涂层的铈泡沫提高太阳能驱动氧化还原反应的效率,重点是可持续燃料生产。考察了衬底孔隙密度(10、30 ppi)和涂层厚度(3、6钙钛矿层)的影响。通过x射线衍射(XRD)和扫描电子显微镜(SEM)证实,制备了LCM钙钛矿并将其均匀涂覆在多孔铈衬底上。氧化铈的双尺度多孔结构增强了涂层的有效性和反应性,涂层厚度在75 ~ 140 μm(3层)到100 ~ 400 μm(6层)之间。热重分析(TGA)表明,lcm涂层的氧化铈样品具有更好的还原程度,O2产量高达131µmol/g,而纯氧化铈的O2产量为55µmol/g。这使得总燃料产量增加了20 - 40%,CO产量高达141 μ mol/g,而纯二氧化铈为98 μ mol/g。通过在高温太阳能反应器中连续15次循环,证实了CO2和H2O分裂的性能稳定性。太阳热化学循环测试表明,在1450℃还原和900℃以下纯CO2氧化条件下,lcm包覆的二氧化铈泡沫产生的CO最高可达244µmol/g, CO产率峰值为6.22 mL·min-1·g-1。然而,纯二氧化铈表现出更快的氧化动力学。这项研究强调了材料设计和优化在改善大规模太阳能燃料生产的太阳能热化学过程中的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Fuel
Fuel 工程技术-工程:化工
CiteScore
12.80
自引率
20.30%
发文量
3506
审稿时长
64 days
期刊介绍: The exploration of energy sources remains a critical matter of study. For the past nine decades, fuel has consistently held the forefront in primary research efforts within the field of energy science. This area of investigation encompasses a wide range of subjects, with a particular emphasis on emerging concerns like environmental factors and pollution.
期刊最新文献
Relationship of catalytic performance and catalyst structure evolution based on pressurized CH4-CO2 reforming reaction over carbon-supported Co-Ir alloy catalysts Enhanced in-situ catalytic hydropyrolysis of enzymatic hydrolysis lignin: Co-processing impregnated nickel formate as a recyclable Ni precursor Encapsulation of fluororubber/nitrocellulose to improve the ignition and combustion of aluminum particles Investigating the emissions and flame structures of lean premixed partially cracked ammonia flames stabilized in a bluff-body burner Nickel selenide-based electrocatalysts for hydrogen evolution, oxygen evolution, and oxygen reduction reactions: recent strategies, challenges, and perspectives
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1