Synthesis of Co3Fe7/CoFe2O4 incorporated porous carbon catalysts via molten salt method: applications in the oxygen reduction reaction and 4-nitrophenol reduction†

IF 4.6 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY RSC Advances Pub Date : 2025-04-08 DOI:10.1039/D5RA00893J
Yanling Wu, Xi Tang, Hui He, Qingyuan Luo, Wenkai Fu, Qinggao Hou and Haijun Zhang
{"title":"Synthesis of Co3Fe7/CoFe2O4 incorporated porous carbon catalysts via molten salt method: applications in the oxygen reduction reaction and 4-nitrophenol reduction†","authors":"Yanling Wu, Xi Tang, Hui He, Qingyuan Luo, Wenkai Fu, Qinggao Hou and Haijun Zhang","doi":"10.1039/D5RA00893J","DOIUrl":null,"url":null,"abstract":"<p >Developing high-performance, multifunctional non-precious metal catalysts is essential for enhancing the efficiency of future energy utilization. In this study, four types of magnetic, recyclable Co<small><sub>3</sub></small>Fe<small><sub>7</sub></small>/CoFe<small><sub>2</sub></small>O<small><sub>4</sub></small> incorporated porous carbon composite catalysts were synthesized using citric acid as the carbon source and ammonium chloride (NH<small><sub>4</sub></small>Cl) as the salt medium. Iron and cobalt salts, in four different proportions, were uniformly incorporated using freeze-drying technology and subsequently processed through <em>in situ</em> calcination. Among the synthesized catalysts, Co<small><sub>3</sub></small>Fe<small><sub>7</sub></small>/CoFe<small><sub>2</sub></small>O<small><sub>4</sub></small>@NC-1, demonstrated outstanding catalytic reduction performance, with a reaction rate constant (<em>k</em>) of 0.031 min<small><sup>−1</sup></small>, along with excellent cycle stability for 4-NP. The resulting Co<small><sub>3</sub></small>Fe<small><sub>7</sub></small>/CoFe<small><sub>2</sub></small>O<small><sub>4</sub></small>@NC-3 catalyst exhibited good ORR activity in an alkaline medium (<em>E</em><small><sub>onset</sub></small> = 0.99 V, <em>E</em><small><sub>1/2</sub></small> = 0.83 V, <em>J</em><small><sub>L</sub></small> = −5.2 mA cm<small><sup>−2</sup></small>), along with long-term durability and resistance to methanol poisoning. These hybrid materials hold promise as non-precious metal electrocatalysts for fuel cell ORRs and introduce a new class of catalytic candidates for 4-NP reduction.</p>","PeriodicalId":102,"journal":{"name":"RSC Advances","volume":" 14","pages":" 10884-10895"},"PeriodicalIF":4.6000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/ra/d5ra00893j?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSC Advances","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ra/d5ra00893j","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Developing high-performance, multifunctional non-precious metal catalysts is essential for enhancing the efficiency of future energy utilization. In this study, four types of magnetic, recyclable Co3Fe7/CoFe2O4 incorporated porous carbon composite catalysts were synthesized using citric acid as the carbon source and ammonium chloride (NH4Cl) as the salt medium. Iron and cobalt salts, in four different proportions, were uniformly incorporated using freeze-drying technology and subsequently processed through in situ calcination. Among the synthesized catalysts, Co3Fe7/CoFe2O4@NC-1, demonstrated outstanding catalytic reduction performance, with a reaction rate constant (k) of 0.031 min−1, along with excellent cycle stability for 4-NP. The resulting Co3Fe7/CoFe2O4@NC-3 catalyst exhibited good ORR activity in an alkaline medium (Eonset = 0.99 V, E1/2 = 0.83 V, JL = −5.2 mA cm−2), along with long-term durability and resistance to methanol poisoning. These hybrid materials hold promise as non-precious metal electrocatalysts for fuel cell ORRs and introduce a new class of catalytic candidates for 4-NP reduction.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
熔盐法合成掺杂 Co3Fe7/CoFe2O4 的多孔碳催化剂:在氧还原反应和 4-硝基苯酚还原反应中的应用†.
开发高性能、多功能的非贵金属催化剂是提高未来能源利用效率的必要条件。本研究以柠檬酸为碳源,氯化铵(NH4Cl)为盐介质,合成了四种磁性、可回收的Co3Fe7/CoFe2O4掺杂多孔碳复合催化剂。铁和钴盐以四种不同的比例,采用冷冻干燥技术均匀地掺入,然后通过原位煅烧进行加工。在所合成的催化剂中,Co3Fe7/CoFe2O4@NC-1表现出优异的催化还原性能,反应速率常数(k)为0.031 min−1,并且对4-NP具有良好的循环稳定性。所制得的Co3Fe7/CoFe2O4@NC-3催化剂在碱性介质中表现出良好的ORR活性(Eonset = 0.99 V, E1/2 = 0.83 V, JL = - 5.2 mA cm - 2),并且具有长期耐用性和抗甲醇中毒能力。这些混合材料有望成为燃料电池orr的非贵金属电催化剂,并为4-NP还原引入了一类新的催化候选物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
RSC Advances
RSC Advances chemical sciences-
CiteScore
7.50
自引率
2.60%
发文量
3116
审稿时长
1.6 months
期刊介绍: An international, peer-reviewed journal covering all of the chemical sciences, including multidisciplinary and emerging areas. RSC Advances is a gold open access journal allowing researchers free access to research articles, and offering an affordable open access publishing option for authors around the world.
期刊最新文献
Comprehensive assessment of precious metal concentration, distribution, and recovery potential in municipal solid waste incineration residues from northern Vietnam Lincomycin HCl-loaded nanoparticles: development, optimization, and incorporation into a nanogel for wound healing Molecular mechanism of biocompatible clusteroluminogens from citric acid and l-lysine Tailoring carbon shell thickness in graphene–Li2S–carbon nanocomposite cathodes for enhanced polysulfide control and electrochemical stability Novel Ag-modified zirconia nanomaterials with antibacterial activity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1