Investigation of 1T′ MoxRe(1–x)S2/2H MoS2 Heterojunction Morphology Evolution through Vapor–Liquid–Solid Growth Mechanism by Temperature-Gradient CVD

IF 3.9 3区 工程技术 Q2 ENGINEERING, CHEMICAL Industrial & Engineering Chemistry Research Pub Date : 2025-04-08 DOI:10.1021/acs.iecr.5c00302
Tong Cheng, Qi-Bo Wang, Qin-Qin Xu, Zhen-Hua Han, Jian-Zhong Yin
{"title":"Investigation of 1T′ MoxRe(1–x)S2/2H MoS2 Heterojunction Morphology Evolution through Vapor–Liquid–Solid Growth Mechanism by Temperature-Gradient CVD","authors":"Tong Cheng, Qi-Bo Wang, Qin-Qin Xu, Zhen-Hua Han, Jian-Zhong Yin","doi":"10.1021/acs.iecr.5c00302","DOIUrl":null,"url":null,"abstract":"Mo doping optimizes the electronic structure of ReS<sub>2</sub>. Mo<sub><i>x</i></sub>Re<sub>(1–<i>x</i>)</sub>S<sub>2</sub>/MoS<sub>2</sub> alloy heterojunction exhibits more favorable application prospects in photodetection due to its higher electrical conductivity than ReS<sub>2</sub>/MoS<sub>2</sub> heterojunction. However, alloy heterojunctions are difficult to prepare controllably using conventional vapor-phase chemical vapor deposition (CVD), and the heterojunction growth mechanism remains unclear. Here, a vapor–liquid–solid temperature-gradient process is proposed to grow alloy heterojunctions within predeposited molten Mo precursor droplets. The sulfuration reaction between Re diffusing into the droplet and Mo atoms facilitates the formation of alloy structures. The growth temperatures <i>T</i><sub>Re</sub> and <i>T</i><sub>Mo</sub> in the temperature-gradient significantly affect the growth patterns and morphology evolution of the heterojunction. The MoS<sub>2</sub> morphology in vertical alloy heterojunctions becomes triangular as the growth temperature increases. The dimension of the top Mo<sub><i>x</i></sub>Re<sub>(1–<i>x</i>)</sub>S<sub>2</sub> alloy is positively correlated with the Re diffusion concentration. Moreover, lateral alloy heterojunctions and single alloys are formed at lower and higher growth temperature differences between <i>T</i><sub>Re</sub> and <i>T</i><sub>Mo</sub>, respectively. These results provide a controllable strategy for the synthesis of isotropic/anisotropic van der Waals TMDC heterojunctions.","PeriodicalId":39,"journal":{"name":"Industrial & Engineering Chemistry Research","volume":"64 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Industrial & Engineering Chemistry Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1021/acs.iecr.5c00302","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Mo doping optimizes the electronic structure of ReS2. MoxRe(1–x)S2/MoS2 alloy heterojunction exhibits more favorable application prospects in photodetection due to its higher electrical conductivity than ReS2/MoS2 heterojunction. However, alloy heterojunctions are difficult to prepare controllably using conventional vapor-phase chemical vapor deposition (CVD), and the heterojunction growth mechanism remains unclear. Here, a vapor–liquid–solid temperature-gradient process is proposed to grow alloy heterojunctions within predeposited molten Mo precursor droplets. The sulfuration reaction between Re diffusing into the droplet and Mo atoms facilitates the formation of alloy structures. The growth temperatures TRe and TMo in the temperature-gradient significantly affect the growth patterns and morphology evolution of the heterojunction. The MoS2 morphology in vertical alloy heterojunctions becomes triangular as the growth temperature increases. The dimension of the top MoxRe(1–x)S2 alloy is positively correlated with the Re diffusion concentration. Moreover, lateral alloy heterojunctions and single alloys are formed at lower and higher growth temperature differences between TRe and TMo, respectively. These results provide a controllable strategy for the synthesis of isotropic/anisotropic van der Waals TMDC heterojunctions.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
气-液-固生长机制下1T ' MoxRe(1-x)S2/2H MoS2异质结形态演化的温度梯度CVD研究
Mo掺杂优化了ReS2的电子结构。MoxRe(1-x)S2/MoS2合金异质结具有比ReS2/MoS2合金更高的导电性,在光探测领域具有更有利的应用前景。然而,传统的气相化学气相沉积(CVD)技术难以控制制备合金异质结,异质结的生长机制也不清楚。本文提出了一种气-液-固温度梯度工艺,在预沉积的熔融Mo前驱体液滴中生长合金异质结。扩散到液滴中的Re与Mo原子之间的硫化反应有利于合金结构的形成。温度梯度中的生长温度TRe和TMo显著影响异质结的生长模式和形貌演变。随着生长温度的升高,合金垂直异质结中MoS2的形貌呈三角形。顶端MoxRe(1-x)S2合金的尺寸与Re扩散浓度呈正相关。此外,在TRe和TMo的较低和较高的生长温差下,分别形成横向合金异质结和单一合金。这些结果为各向同性/各向异性范德华TMDC异质结的合成提供了一种可控的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Industrial & Engineering Chemistry Research
Industrial & Engineering Chemistry Research 工程技术-工程:化工
CiteScore
7.40
自引率
7.10%
发文量
1467
审稿时长
2.8 months
期刊介绍: ndustrial & Engineering Chemistry, with variations in title and format, has been published since 1909 by the American Chemical Society. Industrial & Engineering Chemistry Research is a weekly publication that reports industrial and academic research in the broad fields of applied chemistry and chemical engineering with special focus on fundamentals, processes, and products.
期刊最新文献
Liquid-Phase Selective Hydrogenation of Cumyl Hydroperoxide to α-Cumyl Alcohol over the Low-Loaded Pt/SiO2 Catalyst under Ambient Conditions Kinetics of Cu–Zn–Al Hydrotalcite Reconstruction Using a Modified Avrami–Erofeev Model: Preliminary Insights Selective Oxidation of Glycerol to Dihydroxyacetone over a Pt–Bi/AC Commercial Catalyst: Reaction Kinetics and Modeling Efflorescence Suppression and Performance Enhancement in CaO-Activated Lepidolite Lithium Slag-Based Geopolymers Magnetically Recoverable NiFe2O4/ZnIn2S4 for Efficient Visible-Light-Driven Photocatalytic Degradation of Xanthates
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1