Construction of Macropores in a Hollow Fiber Carbon Membrane Enables Efficient CO2 Removal from Natural Gas

IF 3.9 3区 工程技术 Q2 ENGINEERING, CHEMICAL Industrial & Engineering Chemistry Research Pub Date : 2025-04-08 DOI:10.1021/acs.iecr.5c00493
Zhi Li, Xingyu Chen, Guanran Zhao, Yaohao Guo, Wei Zhao, Linfeng Lei, Zhi Xu
{"title":"Construction of Macropores in a Hollow Fiber Carbon Membrane Enables Efficient CO2 Removal from Natural Gas","authors":"Zhi Li, Xingyu Chen, Guanran Zhao, Yaohao Guo, Wei Zhao, Linfeng Lei, Zhi Xu","doi":"10.1021/acs.iecr.5c00493","DOIUrl":null,"url":null,"abstract":"Membrane-based CO<sub>2</sub> separation technology is highly desired for natural gas sweetening, and the development of advanced membrane materials with low cost and high CO<sub>2</sub>/CH<sub>4</sub> separation factors under high pressures is the key to the membrane market. Herein, cellulose-derived carbon molecular sieve (CMS) hollow fiber membranes within macropores were constructed by incorporating a thermal labile polymer of poly(vinyl butyral) (PVB). During a controlled carbonization protocol, the spun cellulose membranes formed the CMS membrane matrix, while the PVB formed homogenized macropores. As a result, the generated macropores in the CMS hollow fiber membranes (CHFMs) effectively reduced the gas transport resistance, confirmed by an increased CO<sub>2</sub> permeance by ∼2.9-fold from 8.48 to 24.72 GPU (CHFM-1) compared to CHFM-0. Moreover, the membranes were evaluated using a simulated high-pressure natural gas stream (3.44 mol % CO<sub>2</sub>–87.0 mol % CH<sub>4</sub>–9.56 mol % N<sub>2</sub>) and showed good separation performance with a CO<sub>2</sub> permeance of 11.66 GPU and a CO<sub>2</sub>/CH<sub>4</sub> separation factor of 38.3 at 30 bar feeding. A long-term durability test over 100 h at 20 bar with a slight decrease in permeance further verified its potential for CO<sub>2</sub> removal from high-pressure natural gas.","PeriodicalId":39,"journal":{"name":"Industrial & Engineering Chemistry Research","volume":"24 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Industrial & Engineering Chemistry Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1021/acs.iecr.5c00493","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Membrane-based CO2 separation technology is highly desired for natural gas sweetening, and the development of advanced membrane materials with low cost and high CO2/CH4 separation factors under high pressures is the key to the membrane market. Herein, cellulose-derived carbon molecular sieve (CMS) hollow fiber membranes within macropores were constructed by incorporating a thermal labile polymer of poly(vinyl butyral) (PVB). During a controlled carbonization protocol, the spun cellulose membranes formed the CMS membrane matrix, while the PVB formed homogenized macropores. As a result, the generated macropores in the CMS hollow fiber membranes (CHFMs) effectively reduced the gas transport resistance, confirmed by an increased CO2 permeance by ∼2.9-fold from 8.48 to 24.72 GPU (CHFM-1) compared to CHFM-0. Moreover, the membranes were evaluated using a simulated high-pressure natural gas stream (3.44 mol % CO2–87.0 mol % CH4–9.56 mol % N2) and showed good separation performance with a CO2 permeance of 11.66 GPU and a CO2/CH4 separation factor of 38.3 at 30 bar feeding. A long-term durability test over 100 h at 20 bar with a slight decrease in permeance further verified its potential for CO2 removal from high-pressure natural gas.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
中空纤维碳膜大孔结构实现天然气中CO2的高效脱除
基于膜的CO2分离技术是天然气脱硫的迫切需要,开发成本低、高压下CO2/CH4分离系数高的先进膜材料是膜市场的关键。本文采用热不稳定聚合物聚乙烯基丁醛(PVB)在大孔内构建了纤维素衍生碳分子筛(CMS)中空纤维膜。在可控碳化过程中,纺丝纤维素膜形成CMS膜基质,而PVB形成均质大孔。结果,CMS中空纤维膜(CHFMs)中产生的大孔有效地降低了气体传输阻力,与CHFM-0相比,CO2渗透率从8.48增加到24.72 GPU (CHFM-1),增加了约2.9倍。此外,在模拟高压天然气流(3.44 mol % CO2 - 87.0 mol % CH4 - 9.56 mol % N2)中对膜进行了评价,在30 bar加料条件下,膜的CO2渗透率为11.66 GPU, CO2/CH4分离系数为38.3,具有良好的分离性能。在20 bar下进行了超过100小时的长期耐久性测试,渗透率略有下降,进一步验证了其从高压天然气中去除二氧化碳的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Industrial & Engineering Chemistry Research
Industrial & Engineering Chemistry Research 工程技术-工程:化工
CiteScore
7.40
自引率
7.10%
发文量
1467
审稿时长
2.8 months
期刊介绍: ndustrial & Engineering Chemistry, with variations in title and format, has been published since 1909 by the American Chemical Society. Industrial & Engineering Chemistry Research is a weekly publication that reports industrial and academic research in the broad fields of applied chemistry and chemical engineering with special focus on fundamentals, processes, and products.
期刊最新文献
Liquid-Phase Selective Hydrogenation of Cumyl Hydroperoxide to α-Cumyl Alcohol over the Low-Loaded Pt/SiO2 Catalyst under Ambient Conditions Kinetics of Cu–Zn–Al Hydrotalcite Reconstruction Using a Modified Avrami–Erofeev Model: Preliminary Insights Selective Oxidation of Glycerol to Dihydroxyacetone over a Pt–Bi/AC Commercial Catalyst: Reaction Kinetics and Modeling Efflorescence Suppression and Performance Enhancement in CaO-Activated Lepidolite Lithium Slag-Based Geopolymers Magnetically Recoverable NiFe2O4/ZnIn2S4 for Efficient Visible-Light-Driven Photocatalytic Degradation of Xanthates
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1