Computational screening of appealing perspectives of indium-based halide double perovskites In2AgSbX6 (X = Cl, Br, and I) for energy harvesting technologies

IF 4.6 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY RSC Advances Pub Date : 2025-04-09 DOI:10.1039/D5RA00242G
Ahmad Ayyaz, M. Zaman, Hanof Dawas Alkhaldi, H. Irfan Ali, Imed Boukhris, S. Bouzgarrou, Murefah mana Al-Anazy and Q. Mahmood
{"title":"Computational screening of appealing perspectives of indium-based halide double perovskites In2AgSbX6 (X = Cl, Br, and I) for energy harvesting technologies","authors":"Ahmad Ayyaz, M. Zaman, Hanof Dawas Alkhaldi, H. Irfan Ali, Imed Boukhris, S. Bouzgarrou, Murefah mana Al-Anazy and Q. Mahmood","doi":"10.1039/D5RA00242G","DOIUrl":null,"url":null,"abstract":"<p >Halide double perovskites have attracted considerable attention for their potential use in solar cells and thermoelectric devices, as they are ecologically benign and possess band gap tunability. Herein, the stability, optoelectronic, and thermal transport characteristics of In<small><sub>2</sub></small>AgSbX<small><sub>6</sub></small> (X = Cl, Br, and I) were examined using density functional theory (DFT). <em>Ab initio</em> molecular dynamics (AIMD) analysis was conducted, which verified the dynamic stability of In<small><sub>2</sub></small>AgSbX<small><sub>6</sub></small> up to 700 K. The estimated elastic parameters further confirmed their mechanical stability. Through mechanical analysis, the asymmetric characteristics of In<small><sub>2</sub></small>AgSbX<small><sub>6</sub></small> were revealed. The above-mentioned materials were ductile, validating their utilization in flexible or foldable technologies. Analyses of the electrical properties of In<small><sub>2</sub></small>AgSbCl<small><sub>6</sub></small>, In<small><sub>2</sub></small>AgSbBr<small><sub>6</sub></small>, and In<small><sub>2</sub></small>AgSbI<small><sub>6</sub></small> showed indirect band gaps (<em>E</em><small><sub>g</sub></small>) of 1.95 eV, 1.35 eV, and 0.78 eV, respectively. These electronic <em>E</em><small><sub>g</sub></small> values were ideal for solar cell applications. The lower effective masses and binding energies of excitons of In<small><sub>2</sub></small>AgSbCl<small><sub>6</sub></small>, In<small><sub>2</sub></small>AgSbBr<small><sub>6</sub></small>, and In<small><sub>2</sub></small>AgSbI<small><sub>6</sub></small> than those of the perspective solar cell candidates CsPbI<small><sub>3</sub></small> and Cs<small><sub>2</sub></small>AgBiBr<small><sub>6</sub></small> provided evidence for their effectiveness as absorber layer materials. The optical analysis of the dielectric constant, absorption, reflection, and loss demonstrated higher absorption, lower reflection, and minimal energy loss within the visible and ultraviolet spectra. The thermal transport features were analyzed for various temperatures up to 600 K and chemical potentials. In<small><sub>2</sub></small>AgSbCl<small><sub>6</sub></small>, In<small><sub>2</sub></small>AgSbBr<small><sub>6</sub></small>, and In<small><sub>2</sub></small>AgSbI<small><sub>6</sub></small> demonstrated p-type nature, higher Seebeck coefficient, and <em>ZT</em> values of 0.75, 0.77, and 0.76, respectively. Thus, In<small><sub>2</sub></small>AgSbCl<small><sub>6</sub></small>, In<small><sub>2</sub></small>AgSbBr<small><sub>6</sub></small>, and In<small><sub>2</sub></small>AgSbI<small><sub>6</sub></small> possessed feasible characteristics for applications in solar cells and thermal energy transformation, demonstrating that they can be utilized in future energy harvesting technologies.</p>","PeriodicalId":102,"journal":{"name":"RSC Advances","volume":" 14","pages":" 11128-11145"},"PeriodicalIF":4.6000,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/ra/d5ra00242g?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSC Advances","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ra/d5ra00242g","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Halide double perovskites have attracted considerable attention for their potential use in solar cells and thermoelectric devices, as they are ecologically benign and possess band gap tunability. Herein, the stability, optoelectronic, and thermal transport characteristics of In2AgSbX6 (X = Cl, Br, and I) were examined using density functional theory (DFT). Ab initio molecular dynamics (AIMD) analysis was conducted, which verified the dynamic stability of In2AgSbX6 up to 700 K. The estimated elastic parameters further confirmed their mechanical stability. Through mechanical analysis, the asymmetric characteristics of In2AgSbX6 were revealed. The above-mentioned materials were ductile, validating their utilization in flexible or foldable technologies. Analyses of the electrical properties of In2AgSbCl6, In2AgSbBr6, and In2AgSbI6 showed indirect band gaps (Eg) of 1.95 eV, 1.35 eV, and 0.78 eV, respectively. These electronic Eg values were ideal for solar cell applications. The lower effective masses and binding energies of excitons of In2AgSbCl6, In2AgSbBr6, and In2AgSbI6 than those of the perspective solar cell candidates CsPbI3 and Cs2AgBiBr6 provided evidence for their effectiveness as absorber layer materials. The optical analysis of the dielectric constant, absorption, reflection, and loss demonstrated higher absorption, lower reflection, and minimal energy loss within the visible and ultraviolet spectra. The thermal transport features were analyzed for various temperatures up to 600 K and chemical potentials. In2AgSbCl6, In2AgSbBr6, and In2AgSbI6 demonstrated p-type nature, higher Seebeck coefficient, and ZT values of 0.75, 0.77, and 0.76, respectively. Thus, In2AgSbCl6, In2AgSbBr6, and In2AgSbI6 possessed feasible characteristics for applications in solar cells and thermal energy transformation, demonstrating that they can be utilized in future energy harvesting technologies.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
铟基卤化物双钙钛矿In2AgSbX6 (X = Cl, Br和I)的能量收集技术的计算筛选
卤化物双钙钛矿在太阳能电池和热电器件中的潜在应用引起了人们的广泛关注,因为它们具有生态良性和带隙可调性。本文利用密度泛函理论(DFT)研究了In2AgSbX6 (X = Cl, Br和I)的稳定性、光电和热输运特性。通过从头算分子动力学(AIMD)分析,验证了In2AgSbX6在700k下的动态稳定性。估计的弹性参数进一步证实了其力学稳定性。通过力学分析,揭示了In2AgSbX6的不对称特性。上述材料具有延展性,验证了它们在柔性或可折叠技术中的应用。对In2AgSbCl6、In2AgSbBr6和In2AgSbI6的电学性能分析表明,间接带隙(Eg)分别为1.95 eV、1.35 eV和0.78 eV。这些电子Eg值是太阳能电池应用的理想选择。与CsPbI3和Cs2AgBiBr6相比,In2AgSbCl6、In2AgSbBr6和In2AgSbI6的激子有效质量和结合能较低,证明了它们作为吸收层材料的有效性。对介电常数、吸收、反射和损耗的光学分析表明,在可见光和紫外光谱中,吸收较高,反射较低,能量损失最小。分析了在600 K以下不同温度和化学势下的热输运特性。In2AgSbCl6、In2AgSbBr6和In2AgSbI6表现为p型,Seebeck系数较高,ZT值分别为0.75、0.77和0.76。因此,In2AgSbCl6、In2AgSbBr6和In2AgSbI6具有在太阳能电池和热能转换中应用的可行特性,表明它们可以用于未来的能量收集技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
RSC Advances
RSC Advances chemical sciences-
CiteScore
7.50
自引率
2.60%
发文量
3116
审稿时长
1.6 months
期刊介绍: An international, peer-reviewed journal covering all of the chemical sciences, including multidisciplinary and emerging areas. RSC Advances is a gold open access journal allowing researchers free access to research articles, and offering an affordable open access publishing option for authors around the world.
期刊最新文献
Comprehensive assessment of precious metal concentration, distribution, and recovery potential in municipal solid waste incineration residues from northern Vietnam Lincomycin HCl-loaded nanoparticles: development, optimization, and incorporation into a nanogel for wound healing Molecular mechanism of biocompatible clusteroluminogens from citric acid and l-lysine Tailoring carbon shell thickness in graphene–Li2S–carbon nanocomposite cathodes for enhanced polysulfide control and electrochemical stability Novel Ag-modified zirconia nanomaterials with antibacterial activity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1