Exceeding 2.2 V Open-Circuit Voltage in Perovskite/Organic Tandem Solar Cells via Multi-Functional Hole-Selective Layer

IF 26 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Advanced Energy Materials Pub Date : 2025-04-08 DOI:10.1002/aenm.202404092
Jung Geon Son, Shahid Ameen, Jina Roe, Sujung Park, Jongdeuk Seo, Jaehyeong Kim, Abdullah Bin Faheem, Ha-eun Koo, Si On Oh, Yeowon Jo, Jae Won Kim, YeonJeong Lee, Yun Seop Shin, Hyungsu Jang, Dongmin Lee, SungHyun Hur, Kyung-Koo Lee, Shinuk Cho, Dong Suk Kim, Jin Young Kim, BongSoo Kim
{"title":"Exceeding 2.2 V Open-Circuit Voltage in Perovskite/Organic Tandem Solar Cells via Multi-Functional Hole-Selective Layer","authors":"Jung Geon Son,&nbsp;Shahid Ameen,&nbsp;Jina Roe,&nbsp;Sujung Park,&nbsp;Jongdeuk Seo,&nbsp;Jaehyeong Kim,&nbsp;Abdullah Bin Faheem,&nbsp;Ha-eun Koo,&nbsp;Si On Oh,&nbsp;Yeowon Jo,&nbsp;Jae Won Kim,&nbsp;YeonJeong Lee,&nbsp;Yun Seop Shin,&nbsp;Hyungsu Jang,&nbsp;Dongmin Lee,&nbsp;SungHyun Hur,&nbsp;Kyung-Koo Lee,&nbsp;Shinuk Cho,&nbsp;Dong Suk Kim,&nbsp;Jin Young Kim,&nbsp;BongSoo Kim","doi":"10.1002/aenm.202404092","DOIUrl":null,"url":null,"abstract":"<p>Perovskite/organic tandem solar cells (POTSCs) are promising candidates for surpassing the Shockley-Queisser limit through reduction of thermalization losses. However, wide bandgap perovskite solar cells (WBG PSCs), which function as top cells of POTSCs, still suffer from significant open-circuit voltage (<i>V</i><sub>OC</sub>) losses, limiting efficiency improvement of POTSCs. Here, a multi-functional hole-selective layer (mHSL) is reported via blending two functionalized self-assembled monolayer (SAM) molecules: (4-(3,6-diiodo-9<i>H</i>-carbazol-9-yl)butyl)phosphonic acid (36ICzC4PA) and (4-(3,6-dimethoxy-9<i>H</i>-carbazol-9-yl)butyl)phosphonic acid (36MeOCzC4PA). The blending of the two molecules plays multiple roles: i) Suppressing micelle formation of SAM molecules, ii) optimizing energy level alignment with homogeneous and highly covered SAMs, iii) enhancing crystallinity and orientation of perovskite through interaction with SAM materials, and iv) suppressing both lattice strain and phase segregation. Implementing mHSL on WBG PSCs enables a power conversion efficiency (PCE) of 18.85% with a notable <i>V</i><sub>OC</sub> of 1.366 V. When integrated into POTSCs, the PCE reached 24.73% (certified 24.19%) with record-high <i>V</i><sub>OC</sub> and fill factor (<i>FF</i>) of 2.216 V and 84.07%, respectively. Furthermore, POTSCs exhibit excellent photo- and thermal stabilities, retaining ≈80% of their initial PCEs after maximum power point (MPP) tracking under 1-sun illumination in ambient conditions for 305 h or exposure to 65 °C in N<sub>2</sub> conditions for 500 h.</p>","PeriodicalId":111,"journal":{"name":"Advanced Energy Materials","volume":"15 28","pages":""},"PeriodicalIF":26.0000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/aenm.202404092","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Perovskite/organic tandem solar cells (POTSCs) are promising candidates for surpassing the Shockley-Queisser limit through reduction of thermalization losses. However, wide bandgap perovskite solar cells (WBG PSCs), which function as top cells of POTSCs, still suffer from significant open-circuit voltage (VOC) losses, limiting efficiency improvement of POTSCs. Here, a multi-functional hole-selective layer (mHSL) is reported via blending two functionalized self-assembled monolayer (SAM) molecules: (4-(3,6-diiodo-9H-carbazol-9-yl)butyl)phosphonic acid (36ICzC4PA) and (4-(3,6-dimethoxy-9H-carbazol-9-yl)butyl)phosphonic acid (36MeOCzC4PA). The blending of the two molecules plays multiple roles: i) Suppressing micelle formation of SAM molecules, ii) optimizing energy level alignment with homogeneous and highly covered SAMs, iii) enhancing crystallinity and orientation of perovskite through interaction with SAM materials, and iv) suppressing both lattice strain and phase segregation. Implementing mHSL on WBG PSCs enables a power conversion efficiency (PCE) of 18.85% with a notable VOC of 1.366 V. When integrated into POTSCs, the PCE reached 24.73% (certified 24.19%) with record-high VOC and fill factor (FF) of 2.216 V and 84.07%, respectively. Furthermore, POTSCs exhibit excellent photo- and thermal stabilities, retaining ≈80% of their initial PCEs after maximum power point (MPP) tracking under 1-sun illumination in ambient conditions for 305 h or exposure to 65 °C in N2 conditions for 500 h.

Abstract Image

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过多功能孔选择层的钙钛矿/有机串联太阳能电池的开路电压超过2.2 V
钙钛矿/有机串联太阳能电池(potsc)通过减少热化损失,有望超越Shockley - Queisser极限。然而,作为poscs顶层电池的宽带隙钙钛矿太阳能电池(WBG PSCs)仍然存在显著的开路电压(VOC)损失,限制了poscs效率的提高。在这里,通过混合两个功能化的自组装单层(SAM)分子:(4‐(3,6‐二碘‐9H‐卡巴唑‐9‐基)丁基)膦酸(36ICzC4PA)和(4‐(3,6‐二甲氧基‐9H‐卡巴唑‐9‐基)丁基)膦酸(36MeOCzC4PA),报道了一个多功能的孔选择层(mHSL)。这两种分子的混合具有多种作用:1)抑制SAM分子的胶束形成,2)优化与均匀且高度覆盖的SAM的能级排列,3)通过与SAM材料的相互作用增强钙钛矿的结晶度和取向,4)抑制晶格应变和相偏析。在WBG PSCs上实现mHSL可实现18.85%的功率转换效率(PCE)和1.366 V的显著VOC。当集成到potsc中时,PCE达到24.73%(认证24.19%),VOC和填充系数(FF)分别达到创纪录的2.216 V和84.07%。此外,poscs表现出优异的光稳定性和热稳定性,在环境条件下1个太阳照射305小时或在65°C的N2条件下暴露500小时后,在最大功率点(MPP)跟踪后,其初始pce保留了约80%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Energy Materials
Advanced Energy Materials CHEMISTRY, PHYSICAL-ENERGY & FUELS
CiteScore
41.90
自引率
4.00%
发文量
889
审稿时长
1.4 months
期刊介绍: Established in 2011, Advanced Energy Materials is an international, interdisciplinary, English-language journal that focuses on materials used in energy harvesting, conversion, and storage. It is regarded as a top-quality journal alongside Advanced Materials, Advanced Functional Materials, and Small. With a 2022 Impact Factor of 27.8, Advanced Energy Materials is considered a prime source for the best energy-related research. The journal covers a wide range of topics in energy-related research, including organic and inorganic photovoltaics, batteries and supercapacitors, fuel cells, hydrogen generation and storage, thermoelectrics, water splitting and photocatalysis, solar fuels and thermosolar power, magnetocalorics, and piezoelectronics. The readership of Advanced Energy Materials includes materials scientists, chemists, physicists, and engineers in both academia and industry. The journal is indexed in various databases and collections, such as Advanced Technologies & Aerospace Database, FIZ Karlsruhe, INSPEC (IET), Science Citation Index Expanded, Technology Collection, and Web of Science, among others.
期刊最新文献
Machine Learning Driven High-Throughput Screening of Asymmetric Dinuclear Cobalt for Nitrate-to-Ammonia Reduction with Near-100% Selectivity Design Matters: How Cell Architecture Shapes the Performance, Cost, and Environmental Impact of Battery Technologies Ionic Liquids Electrolytes for High Performance Sodium Batteries—Chemistry, Composition, and Interfaces Interface Stabilization via In Situ Lithiated Sn Interlayer in All-Solid-State Li-Metal Batteries: Toward Pellet-Type Cell to Pouch-Type Cell Advances in Performance Degradation Mechanisms and Improvement Measures of Perfluorosulfonic Acid Ionomers in Catalyst Layers of Proton Exchange Membrane Fuel Cells Under Moderate‐Temperature and Low Relative Humidity Operation: A Review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1