High-conversion-efficiency and stable six-electron Zn–I2 batteries enabled by organic iodide/thiazole-linked covalent organic frameworks†

IF 30.8 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Energy & Environmental Science Pub Date : 2025-04-09 DOI:10.1039/D5EE00365B
Wenyan Du, Qi Huang, Xunwen Zheng, Yaokang Lv, Ling Miao, Ziyang Song, Lihua Gan and Mingxian Liu
{"title":"High-conversion-efficiency and stable six-electron Zn–I2 batteries enabled by organic iodide/thiazole-linked covalent organic frameworks†","authors":"Wenyan Du, Qi Huang, Xunwen Zheng, Yaokang Lv, Ling Miao, Ziyang Song, Lihua Gan and Mingxian Liu","doi":"10.1039/D5EE00365B","DOIUrl":null,"url":null,"abstract":"<p >Six-electron I<small><sup>−</sup></small>/I<small><sup>5+</sup></small> redox chemistry gives a promising platform to achieve high-capacity Zn–I<small><sub>2</sub></small> batteries, but faces limited conversion efficiency and instability of IO<small><sub>3</sub></small><small><sup>−</sup></small> species. Here, we design a thiazole-linked covalent organic framework (TZ-COF) hosted organic trimethylsulfonium iodide (C<small><sub>3</sub></small>H<small><sub>9</sub></small>IS/TZ-COFs) electrode in a 1-methyl-3-propylimidazolium bromide (MPIBr)-containing electrolyte to stimulate I<small><sup>−</sup></small>/I<small><sup>0</sup></small>/I<small><sup>+</sup></small>/I<small><sup>5+</sup></small> iodine conversion chemistry with better electrochemical efficiency and stability. Compared with inorganic symmetric I<small><sub>2</sub></small> molecules, the more easily exposed I<small><sup>−</sup></small> center of polar C<small><sub>3</sub></small>H<small><sub>9</sub></small>IS combines with the oxygen in H<small><sub>2</sub></small>O to form HIO<small><sub>3</sub></small>, which initiates 6e<small><sup>−</sup></small> I<small><sup>−</sup></small>/IO<small><sub>3</sub></small><small><sup>−</sup></small> conversion through I<small><sup>+</sup></small> activation of MPIBr, thus reducing the oxidation/reduction potential gap to achieve 97% iodine conversion efficiency. Meanwhile, thiazole units of TZ-COFs enable strong chemical adsorption with IO<small><sub>3</sub></small><small><sup>−</sup></small> species to improve redox stability with high reversibility due to reduced energy barriers (−5.1 <em>vs.</em> −3.5 eV in activated carbon (AC) host) and upgraded conversion kinetics (activation energy: 0.21 <em>vs.</em> 0.38 eV in AC). Such a stable and high-efficiency 6e<small><sup>−</sup></small> iodine conversion gives C<small><sub>3</sub></small>H<small><sub>9</sub></small>IS/TZ-COFs electrodes record high capacity (1296 mA h g<small><sup>−1</sup></small>) and energy density (1464 W h kg<small><sup>−1</sup></small>), and superior cycling stability (1200 cycles). These findings constitute a major advance in the design of iodine redox chemistry towards state-of-the-art Zn–I<small><sub>2</sub></small> batteries.</p>","PeriodicalId":72,"journal":{"name":"Energy & Environmental Science","volume":" 13","pages":" 6540-6547"},"PeriodicalIF":30.8000,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/ee/d5ee00365b?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy & Environmental Science","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ee/d5ee00365b","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Six-electron I/I5+ redox chemistry gives a promising platform to achieve high-capacity Zn–I2 batteries, but faces limited conversion efficiency and instability of IO3 species. Here, we design a thiazole-linked covalent organic framework (TZ-COF) hosted organic trimethylsulfonium iodide (C3H9IS/TZ-COFs) electrode in a 1-methyl-3-propylimidazolium bromide (MPIBr)-containing electrolyte to stimulate I/I0/I+/I5+ iodine conversion chemistry with better electrochemical efficiency and stability. Compared with inorganic symmetric I2 molecules, the more easily exposed I center of polar C3H9IS combines with the oxygen in H2O to form HIO3, which initiates 6e I/IO3 conversion through I+ activation of MPIBr, thus reducing the oxidation/reduction potential gap to achieve 97% iodine conversion efficiency. Meanwhile, thiazole units of TZ-COFs enable strong chemical adsorption with IO3 species to improve redox stability with high reversibility due to reduced energy barriers (−5.1 vs. −3.5 eV in activated carbon (AC) host) and upgraded conversion kinetics (activation energy: 0.21 vs. 0.38 eV in AC). Such a stable and high-efficiency 6e iodine conversion gives C3H9IS/TZ-COFs electrodes record high capacity (1296 mA h g−1) and energy density (1464 W h kg−1), and superior cycling stability (1200 cycles). These findings constitute a major advance in the design of iodine redox chemistry towards state-of-the-art Zn–I2 batteries.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
有机碘化物/噻唑共价有机框架实现高转换效率和稳定的六电子Zn-I2电池
六电子 I-/I5+ 氧化还原化学为推动高容量 Zn-I2 电池提供了一个前景广阔的平台,但却面临着转换效率有限和 IO3- 物种不稳定的问题。在此,我们在含 1-甲基-3-丙基溴化咪唑鎓(MPIBr)的电解液中设计了一种噻唑连接共价有机框架(TZ-COFs)寄生有机碘化三甲基锍(C3H9IS/TZ-COFs)电极,以激发 I-/I0/I+/I5+ 碘转化化学反应,并获得更好的电化学效率和稳定性。与无机对称 I2 分子相比,极性 C3H9IS 中更容易暴露的 I- 中心与 H2O 中的氧结合形成 HIO3,通过 I+ 激活 MPIBr 启动 6 e- I-/IO3- 转换,从而缩小氧化/还原电位差,实现 97% 的碘转换效率。同时,TZ-COFs 中的噻唑单元能与 IO3- 物种产生强烈的化学吸附,从而提高氧化还原的稳定性和可逆性,这得益于能垒的降低(-5.1 eV 对比起活性炭(AC)宿主的-3.5 eV)和转化动力学的升级(活化能:0.21 eV 对比起活性炭的 0.38 eV)。这种稳定、高效的 6 e- 碘转化为 C3H9IS/TZ-COFs 电极带来了创纪录的容量(1296 mAh g-1)和能量密度(1464 Wh kg-1),以及卓越的循环稳定性(1200 次循环)。这些发现为设计碘氧化还原化学、制造最先进的 Zn-I2 电池带来了重大进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Energy & Environmental Science
Energy & Environmental Science 化学-工程:化工
CiteScore
50.50
自引率
2.20%
发文量
349
审稿时长
2.2 months
期刊介绍: Energy & Environmental Science, a peer-reviewed scientific journal, publishes original research and review articles covering interdisciplinary topics in the (bio)chemical and (bio)physical sciences, as well as chemical engineering disciplines. Published monthly by the Royal Society of Chemistry (RSC), a not-for-profit publisher, Energy & Environmental Science is recognized as a leading journal. It boasts an impressive impact factor of 8.500 as of 2009, ranking 8th among 140 journals in the category "Chemistry, Multidisciplinary," second among 71 journals in "Energy & Fuels," second among 128 journals in "Engineering, Chemical," and first among 181 scientific journals in "Environmental Sciences." Energy & Environmental Science publishes various types of articles, including Research Papers (original scientific work), Review Articles, Perspectives, and Minireviews (feature review-type articles of broad interest), Communications (original scientific work of an urgent nature), Opinions (personal, often speculative viewpoints or hypotheses on current topics), and Analysis Articles (in-depth examination of energy-related issues).
期刊最新文献
Fused-ring topology orchestrates crystallographic control and polyiodide sequestration for ultra-durable zinc-iodine batteries Correction: Atmospheric-moisture-driven evaporative cooling and concurrent hydrovoltaic energy harvesting in photovoltaic panels Photostable wide-bandgap perovskites with enhanced interface coupling for all-perovskite tandems Antisolvent engineering enhanced high-entropy liquid flow thermocells with giant power density for low-grade heat harvesting Combating Solvent Concentration Polarization for Ultrafast and Highly Stable Lithium Batteries at −60 oC
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1