Enhancement of Mechanical, Thermal, and Barrier Behavior of Sustainable PECF Copolyester Nanocomposite Films Using Polydopamine-Functionalized MXene Fillers

IF 3.9 2区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY Langmuir Pub Date : 2025-04-09 DOI:10.1021/acs.langmuir.4c04909
Mohammad Raza Miah, Jiheng Ding, Hongran Zhao, Qinchao Chu, Hao Wang, Jinggang Wang, Jin Zhu
{"title":"Enhancement of Mechanical, Thermal, and Barrier Behavior of Sustainable PECF Copolyester Nanocomposite Films Using Polydopamine-Functionalized MXene Fillers","authors":"Mohammad Raza Miah, Jiheng Ding, Hongran Zhao, Qinchao Chu, Hao Wang, Jinggang Wang, Jin Zhu","doi":"10.1021/acs.langmuir.4c04909","DOIUrl":null,"url":null,"abstract":"The development of high-strength titanium carbide (Ti<sub>3</sub>C<sub>2</sub>T<sub><i>x</i></sub>) MXene-PDA nanosheet-based sustainable poly(ethylene-<i>co</i>-1,4-cyclohexane dimethylene 2,5-furan dicarboxylic acid) (PECF) copolyester nanocomposites with superior tensile, thermal, and barrier properties is a promising avenue for advanced materials. However, achieving Ti<sub>3</sub>C<sub>2</sub>T<sub><i>x</i></sub> MXene-based polyester nanocomposites that exhibit exceptional thermal conductivity, and enhanced mechanical and barrier properties remains a significant challenge. In this study, we employed self-assembly technology through layer-by-layer (LBL) coating to create highly saturated Ti<sub>3</sub>C<sub>2</sub>T<sub><i>x</i></sub> MXene-PDA fillers that are uniformly dispersed and strongly bonded within the PECF matrix. This approach enabled the formation of dense nanocomposites with diverse functional properties. Specifically, MPP2 nanocomposites (0.3 wt %) demonstrated excellent mechanical performance, with a compressive tensile strength of 84 MPa and a modulus of 4.4 GPa, alongside remarkable O<sub>2</sub>, CO<sub>2</sub>, and H<sub>2</sub>O vapor barrier properties and superior thermal stability. Compared to pure PECF, the addition of Ti<sub>3</sub>C<sub>2</sub>T<sub><i>x</i></sub> MXene-PDA at a loading of 0.3 wt % resulted in substantial improvements: a 30% increase in tensile strength, a 109% increase in modulus, and significantly enhanced barrier properties for O<sub>2</sub> (27.3-times), CO<sub>2</sub> (24.7-times), and H<sub>2</sub>O vapor (5.0-times). These findings highlight the potential of Ti<sub>3</sub>C<sub>2</sub>T<sub><i>x</i></sub> MXene-PDA-reinforced PECF nanocomposites for high-performance applications, offering valuable insights for future materials development.","PeriodicalId":50,"journal":{"name":"Langmuir","volume":"59 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Langmuir","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.langmuir.4c04909","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The development of high-strength titanium carbide (Ti3C2Tx) MXene-PDA nanosheet-based sustainable poly(ethylene-co-1,4-cyclohexane dimethylene 2,5-furan dicarboxylic acid) (PECF) copolyester nanocomposites with superior tensile, thermal, and barrier properties is a promising avenue for advanced materials. However, achieving Ti3C2Tx MXene-based polyester nanocomposites that exhibit exceptional thermal conductivity, and enhanced mechanical and barrier properties remains a significant challenge. In this study, we employed self-assembly technology through layer-by-layer (LBL) coating to create highly saturated Ti3C2Tx MXene-PDA fillers that are uniformly dispersed and strongly bonded within the PECF matrix. This approach enabled the formation of dense nanocomposites with diverse functional properties. Specifically, MPP2 nanocomposites (0.3 wt %) demonstrated excellent mechanical performance, with a compressive tensile strength of 84 MPa and a modulus of 4.4 GPa, alongside remarkable O2, CO2, and H2O vapor barrier properties and superior thermal stability. Compared to pure PECF, the addition of Ti3C2Tx MXene-PDA at a loading of 0.3 wt % resulted in substantial improvements: a 30% increase in tensile strength, a 109% increase in modulus, and significantly enhanced barrier properties for O2 (27.3-times), CO2 (24.7-times), and H2O vapor (5.0-times). These findings highlight the potential of Ti3C2Tx MXene-PDA-reinforced PECF nanocomposites for high-performance applications, offering valuable insights for future materials development.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用聚多巴胺功能化MXene填料增强可持续PECF共聚酯纳米复合薄膜的机械、热和屏障行为
高强度碳化钛(Ti3C2Tx) MXene-PDA纳米片基可持续聚(乙烯-co-1,4-环己烷二亚甲基2,5-呋喃二羧酸)(PECF)共聚酯纳米复合材料具有优异的拉伸、热学和阻隔性能,是一种很有前途的先进材料。然而,实现Ti3C2Tx mxene基聚酯纳米复合材料具有优异的导热性,增强的机械和阻隔性能仍然是一个重大挑战。在这项研究中,我们采用了自组装技术,通过层层(LBL)涂层来制造高饱和的Ti3C2Tx MXene-PDA填料,这些填料均匀分散并在PECF基体中紧密结合。这种方法能够形成具有多种功能特性的致密纳米复合材料。具体来说,MPP2纳米复合材料(0.3 wt %)表现出优异的机械性能,抗压强度为84 MPa,模量为4.4 GPa,同时具有出色的O2, CO2和H2O蒸气阻隔性能和优异的热稳定性。与纯PECF相比,在0.3 wt %的载荷下,Ti3C2Tx MXene-PDA的添加效果显著改善:抗拉强度提高30%,模量提高109%,对O2(27.3倍)、CO2(24.7倍)和H2O蒸气(5.0倍)的阻隔性能显著提高。这些发现突出了Ti3C2Tx mxene - pda增强PECF纳米复合材料在高性能应用方面的潜力,为未来材料的开发提供了有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Langmuir
Langmuir 化学-材料科学:综合
CiteScore
6.50
自引率
10.30%
发文量
1464
审稿时长
2.1 months
期刊介绍: Langmuir is an interdisciplinary journal publishing articles in the following subject categories: Colloids: surfactants and self-assembly, dispersions, emulsions, foams Interfaces: adsorption, reactions, films, forces Biological Interfaces: biocolloids, biomolecular and biomimetic materials Materials: nano- and mesostructured materials, polymers, gels, liquid crystals Electrochemistry: interfacial charge transfer, charge transport, electrocatalysis, electrokinetic phenomena, bioelectrochemistry Devices and Applications: sensors, fluidics, patterning, catalysis, photonic crystals However, when high-impact, original work is submitted that does not fit within the above categories, decisions to accept or decline such papers will be based on one criteria: What Would Irving Do? Langmuir ranks #2 in citations out of 136 journals in the category of Physical Chemistry with 113,157 total citations. The journal received an Impact Factor of 4.384*. This journal is also indexed in the categories of Materials Science (ranked #1) and Multidisciplinary Chemistry (ranked #5).
期刊最新文献
Deposition and Bonding Mechanism of Multiparticle Impacts in Cold Spraying: A Molecular Dynamics Simulation A Janus Interfacial Evaporator Constructed from Silicon Carbide Foam for Seawater Evaporation Surface Energy and Pinning Forces of Fluorine-Free, Water-Friendly Coatings for Medical Devices Effect of Silica Nanoparticles with Different Surface Charges on the Secondary Structure of Bovine Serum Albumin Protein Piezo-Catalytic Degradation of PFASs: Emerging Trends, Mechanistic Insights, and Future Directions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1